

Les erreurs SQL les plus fréquentes

Date de publication : 22/02/2004

Par SQLPro

niveau : intermédiaire

Tous les débutants commetent les mêmes erreurs. Confondant par exemple la gestion de
lignes de fichiers avec une table, la logique procédurale avec la logique ensembliste...
Le but de cet article est de faire le point sur les erreurs les plus fréquentes, pourquoi
sont-elles commises et comment y remédier.

1. Les noms d'objets SQL
2. Terminologie SQL
3. NULL, n'est pas une valeur !
4. CASE SENSITIVE
5. Le dernier...
6. Position...
7. Format de Date...
8. Dédoublonnage
8.1. DISTINCTROW ou l'exemple parfait de l'absurdité d'Access !
8.2. Dédoublonnage partiel
9. Cosmétique...
10. Insertion multiple

1. Les noms d'objets SQL

J'ai donné des noms explicites à mes tables et colonnes, et je me heurte à des
problèmes... Pourquoi ?

SQL est un langage qui repose sur une norme. Les noms des objets SQL ont donc une
construction normative spécifique.
En particulier on ne peut faire usage que des 26 lettres de l'alphabet, des dix
chiffres et du caractère "blanc souligné" (underscore). Tout autre caractère est
interdit pour nommer un objet SQL (table, colonne, vue, utilisateur, contrainte...).
Certains SGBDR autorisent n'importe quoi comme caractères dans le nom d'un objet...
hélas !

Le nombre maximal de caractères est de 128, mais certains SGBDR ont des limites plus
petites comme Oracle.
Sont donc interdits le caractère "blanc", les caractères diacritiques (accents,
cédille, etc.).

En principe, la casse (c'est à dire majuscule et minuscule) n'a pas d'importance dans
la nomination des objets. Cependant, certains SGBDR s'avèrent sensibles à la casse pour
le nom des objets SQL dans certaines conditions. C'est la cas en particulier de SQL
Server, si on le paramètre à l'installation en CASE SENSITIVE.

Il est très dangereux de donner des noms d'objets avec des blancs ou des
accents. Pourquoi ? Parce que certains modules de programme ne travaillent pas sur les
mêmes codes de pages. A l'heure où les bases de données sont de plus en plus intégrées
à Internet, la multiplicité des interfaces de traitement, rend difficile, voire impossible
l'interaction du code si les noms des objets SQL n'ont pas été définis correctement. De
plus si le nom comporte des caractères illicites (ce que certains SGBDR permettent
comme Access ou SQL Server) alors il faut ruser en utilisant des expressions spécifiques,
et les traitements qui en découlent prennent plus de temps que si les noms avaient été
définis proprement.

La norme en la matière

Bien écrire...

Voici quelques règles pour bien écrire votre code SQL...

Tout d'abord, toujours écrire votre code SQL en majuscule. Ainsi les noms des objets
seront par exemple écrit :

Ouvrez n'importe quel bouquin d'informatique traitant de SQL. Vous y verrez toujours le
code SQL en majuscule. C'est une habitude acquise depuis très longtemps. Elle est
devenue un véritable standard de fait. Pourquoi ? Parce que lorsque l'on mélange du
code client (Cobol, C, VB, Delphi, PHP, C#, Java...) et du code SQL, il est difficile de s'y
retrouver si l'on ne peut facilement distinguer l'un de l'autre. Ainsi l'habitude a été prise
d'écrire le code "client" en minuscule et le code "server" en majuscule. Ceci permet une
distinction efficace et immédiate des éléments de code s'exécutant sur le seveur et ceux

CREATE TABLE CLIENT
(CLI_NUM INTEGER NOT NULL PRIMARY KEY,
 CLI_NOM VARCHAR(32))

SELECT *
FROM CLIENT
WHERE CLI_NOM LIKE 'DU%T'

Page 1 of 10Le SQL de A à Z - Les erreurs les plus fréquentes - Club d'entraide des développeurs f...

14/04/2008http://sqlpro.developpez.com/cours/sqlaz/erreurs/

s'exécutant localement.

Exemple :

Ensuite, indentez votre code SQL ! En effet SQL peut devenir difficile à lire s'il n'est
pas proprement présenté. Voici pour comparaison une même requête écrite
malproprement et sa jumelle écrite avec indentation... Laquelle sauriez vous relire et
comprendre plus rapidement ?

La règle de base en la matière est :

1. toute requête doit être un bloc homogène de lignes indentées à la même origine
2. chaque nouvelle clause d'une requête doit commencer à la ligne
3. lorsqu'une clause est composée de plusieurs éléments bien distinct, les écrire sur

différentes lignes
4. développer la clause FROM sous la forme d'un arbre avec une ligne pour la table et

une ligne pour la clause de jointure
5. ne pas dépasser 70 à 80 caractères par ligne

Exemple :

Ici l'arbre de jointure est :
Table T_ITEM_ITM => racine de l'arbre
Table T_PARAGRAPHE_PRG => branche depuis table racine T_ITEM_ITM
Table TR_TYPE_PARAGRAPHE_TPG => branche depuis table T_PARAGRAPHE_PRG (donc
double indentation)
Table TR_STYLE_ITEM_STI => branche depuis table racine T_ITEM_ITM

Si le coeur vous en dit, n'hésitez pas à adopter un standard de codification des objets de
votre base. Dans ce cas, lisez ceci : Normalisation des noms des objets des bases de
données

Les noms des objets sont-ils sensibles à la casse ?

La norme SQL dit que par principe, les noms des objets SQL (nom de table, de vue, de
colonne...) ne sont pas sensible à la casse. Ainsi T_Client et T_CLIENT sont un seul et
même objet. Mais cette règle possède une exception. En effet, lorsque l'on utilise un
identifiant de SQL comme nom, alors le nom devient sensible à la casse. Par exemple, si
je veux utiliser le mot clef TYPE comme nom de colonne d'une table, il me faut l'entourer
de guillemets car ce mot est réservé. Dès lors, ce nom de colonne devient sensible à la
casse.

Exemple :

Constitue un ordre de création de table SQL tout à fait valide !

ATTENTION : comme les noms des objets sont stockés dans des tables de la base dites
"table de schéma" ou "dictionnaire" ou encore table "système", certains SGBDR dans
certaines configurations sont sensibles à la casse pour les noms des objets. C'est le cas
par exemple de SQL Server qui, lors de son installation peut être configuré pour être
sensible à la casse...

2. Terminologie SQL

With dmSys.QAdoGenericUpdate
do
begin
 if active
 then
 close;
 SQL.clear;
 SQL.add('UPDATE TS_PARAMETRES_BASE_PRB SET PRB_VALEUR = '+QuotedStr(ParaVal)
 +' WHERE PRB_NOM = '+QuotedStr(ParaName));
 execSQL;
end;

SELECT DISTINCT VILLE_ETP
FROM T_ENTREPOT WHERE
RAYON_RYN IN (SELECT
RAYON_RYN FROM T_ENTREPOT
WHERE RAYON_RYN NOT IN
(SELECT RAYON_RYN FROM
T_ENTREPOT WHERE
RAYON_RYN NOT IN (SELECT
RAYON_RYN FROM T_RAYON))
) GROUP BY VILLE_ETP
HAVING COUNT (*) =
(SELECT COUNT(DISTINCT
RAYON_RYN) FROM T_RAYON)

SELECT DISTINCT VILLE_ETP
FROM T_ENTREPOT
WHERE RAYON_RYN IN (SELECT RAYON_RYN
 FROM T_ENTREPOT
 WHERE RAYON_RYN NOT IN (SELECT RAYON_RYN
 FROM T_ENTREPOT
 WHERE RAYON_RYN N

RAYON_RYN
 FROM
GROUP BY VILLE_ETP
HAVING COUNT (*) = (SELECT COUNT(DISTINCT RAYON_RYN)
 FROM T_RAYON)

SELECT ITM.ITM_ID, PRG.PRG_ID, PRG_TEXTE, TPG_LIBELLE,
 CASE
 WHEN TPG.TPG_ID = 1
 THEN ' ' +COALESCE(CAST(PRG_ORDRE AS VARCHAR(32)),'')
 ELSE ''
 END AS TEXTE,
 PRG_ORDRE

FROM T_ITEM_ITM ITM
 LEFT OUTER JOIN T_PARAGRAPHE_PRG PRG
 ON ITM.ITM_ID = PRG.ITM_ID
 LEFT OUTER JOIN TR_TYPE_PARAGRAPHE_TPG TPG
 ON PRG.TPG_ID = TPG.TPG_ID
 LEFT OUTER JOIN TR_STYLE_ITEM_STI STI
 ON ITM.STI_ID = STI.STI_ID

ORDER BY ITM_BG, PRG_ORDRE

CREATE MA_TABLE
("TYPE" INTEGER,
 "Type" FLOAT,
 "TYpe" CHAR(1))

Page 2 of 10Le SQL de A à Z - Les erreurs les plus fréquentes - Club d'entraide des développeurs f...

14/04/2008http://sqlpro.developpez.com/cours/sqlaz/erreurs/

Idée reçue : "champ" et "enregistrement" n'existent pas dans les bases de
données ! Pas plus que "droits"...

CHAMP: cette notion n'existe pas dans les bases de données car un champ est un
élément visuel (champ opératoire du chirurgien, champ visuel du pilote, champs de saisie
dans une interface de saisie...)
En base de données on parle de "colonne", car les tables sont visualisables sous forme
de tableaux dans lesquels existent des lignes et des colonnes...

ENREGISTREMENT: cette notion n'existe pas dans les bases de données car un
enregistrement suppose un fichier lu ligne par ligne, alors que (sauf exception pour les
bases de type fichier) toutes les tables d'une même base sont stockées dans un seule et
même fichier par des granules de stockage unitaires appelée "pages".
On parle alors de ligne qui est une notion virtuelle.

DROITS: les droits n'existent pas en SQL. En effet les droits supposent un mode d'accès
sur un fichier. Or les bases de données et SQL gèrent différents modes qui n'ont pas
forcément quelque chose à voir avec les lectures et écritures de données. Ainsi SQL
permet de définir des privilèges d'utilisation sur des objets de bases de données qui ne
sont ni des tables, ni des vues, ni des colonnes, ni des données, mais des éléments de
conception de la base de données... C'est pourquoi parler de droits est ... absurde et
réservé aux notions "systèmes" basées sur des fichiers et des ressources. Dans SQL on
parle donc de privilèges que l'on octroie ou révoque.

3. NULL, n'est pas une valeur !

Je n'arrive pas à retrouver mes valeurs nulles.

Je fais SELECT ... WHERE MaColonne = NULL et cela ne marche pas !
NULL : cet élément du SQL n'est pas une valeur, puisque c'est justement l'absence de
valeur. En fait NULL est un marqueur comme NIL en programmation qui indique qu'au
bout du pointeur il n'y a pas de ressource.
Par exemple comparer une colonne à NULL n'a aucun sens. Pour traiter les marqueurs
NULL il faut utiliser des prédicats spéciaux comme IS NULL, IS NOT NULL ou des
fonctions particulières comme COALESCE ou NULLIF ou encore en utilisant la structure
CASE.

A lire sur le sujet les opérateurs de traitement des valeurs NULL : Opérateurs de
traitement des marqueurs NULL

4. CASE SENSITIVE

Une fausse bonne idée consiste à définir une base de données (ou certaines tables,
colonnes) avec une collation qui rends les chaînes de caractères insensible à la casse
(plus de différences entre majuscules et minuscules). C'est une hérésie que d'utiliser un
tel comportement par défaut. En effet autant il est facile dans les requêtes de s'affranchir
de la casse dans les comparaisons, autant il est très difficile voire impossible de rendre
des éléments sensible à la casse lorsque ces derniers ont été rendus CASE INSENSITIVE !
Pour rendre vos comparaisons insensibles à la casse, il suffit de jouer avec la fonction
UPPER ou LOWER présente dans tous les SGBDR.

Exemple :

Mais comment faire la distinction entre "Dupont" et "DUPONT" si votre SGBDR a été
rendu insensible à la casse ?
La solution consiste, si votre SGBDR le supporte, à transtyper les colonnes en chaînes
binaires :

Exemple :

Ce code est évidemment incommensurablement plus long à exécuter que si votre SGBDR
avait été rendu sensible à la casse !

Au fait, savez-vous pourquoi on parle de casse pour distinguer les majuscules et
minuscules ? Cette terminologie existe depuis des temps anciens. Des temps ou les
imprimeurs avaient à leur disposition pour fabriquer les matrices d'impression, un grand
"bac" divisé en de multiples cases dans lesquelles on trouvait les majuscules dans les
cases des rangées supérieures et les minuscules dans les cases des rangées inférieurs.
Comme l'on utilisait plus fréquemment les minuscules, on les avaient rangés en bas de
manière à ce quelle soient plus accessibles à l'utilisateur. Ce grand bac, s'apelle une
casse, et cette technique de rangement relève de l'ergonomie. ! Donc, en bas les
minuscules en haut les majuscules, d'où les expressions bas de casse (minuscules) et
haut de casse (majuscules). Bref, l'informatique n'a rien inventé en la matière...

Voir à ce sujet les problématiques de pages de caractères et collations : Une question de
caractères...

5. Le dernier...

Une question qui revient souvent dans les discussions est de retrouver la dernière
ligne insérée dans une table. Cette question n'a aucun sens dans l'univers des bases
de données, car ces dernières ne possèdent pas d'ordre établie. Une table est un sac de
bille. Si vous recevez mon sac de bille, avez-vous un moyen quelconque de savoir quelle
a été la dernière bille que j'y ai fourrée ? Les SGBDR ont l'habitude de minimiser les

SELECT *
FROM CLIENT
WHERE UPPER(CLI_NOM) LIKE 'DU%T'

SELECT *
FROM CLIENT
WHERE CAST(CLI_NOM AS VARBINARY(32)) = CAST('DUPONT' AS VARBINARY(32))

Page 3 of 10Le SQL de A à Z - Les erreurs les plus fréquentes - Club d'entraide des développeurs f...

14/04/2008http://sqlpro.developpez.com/cours/sqlaz/erreurs/

coûts de gestion des entrées/sorties de disque. Autrement dit, lorsque je supprime une
ligne, celle ci n'est pas effacée, ni compactée. Elle reste un espace mort. Si une nouvelle
insertion arrive, il y a fort à parier que votre SGBDR y placera la nouvelle ligne à insérer !

Exemple :

Vous vous attendiez sans doute que la ligne "jkl" soit la dernière ! Erreur, le SGBDR a
récupéré la place de la ligne "def" pour y mettre jkl !

Il n'y a aucune notion d'ordre dans les SGBDR, ni ordre des lignes, ni ordre des colonnes,
sauf ceux que l'utilisateur veut y voir figurer dans les données en ajoutant une colonne
spécifique pour le tri.
Tout au plus, si une colonne possède une donnée dont la valeur est toujours supérieure a
celles déjà insérées (par exemple une colonne auto incrémentée) alors on peut retrouver
la valeur maximale (donc la dernière ligne insérée) par une requête de calcul d'agrégat
comme SELECT MAX(...
Mais s'il faut avoir l'assurance de la séquence dans le temps, il convient d'ajouter à la
table une colonne contenant une défintion de type TIMESTAMP (combiné date heure)
avec la valeur par défaut du serveur par une fonction comme CURRENT_TIMESTAMP et
cela dans la défintion de la table.

Exemple :

Mais cette pratique est dangereuse, car lors d'insertion massives la précision de ce
combiné date heure peut générer des données indentiques...
C'est pourquoi certains SGBDR ont ajouté a leur définition un type particulier tel que
l'horodatage (TIMESTAMP par exemple pour MS SQL Server) assurant d'avoir toujours
une colonne dont toutes les valeurs sont distinctes et croissante en fonction du moment
de l'insertion.
Enfin, dans la cas de calculs de clefs auto incrémentées, l'utilisation de SELLECT MAX(...)
+1 est une abération qui ne peut que conduire la base à des violations de contraintes de
clefs primaires du fait de la concurrence.

A lire sur le sujet : Clefs auto-incrémentées

6. Position...

Autre problématique, ajouter une colonne à la position n, par exemple entre la colonne x
et la colonne y de la table... Autre utopie bien entendu car il n'existe pas d'ordre dans les
bases de données (voir ci dessus). Par d'ordre concernant les tables, ni d'ordre
concernant les colonnes au sein de la table.
Quoique... !
Tout bien considéré la norme SQL présente dans les informations de schéma une colonne
intitulé "ORDINAL_POSITION" qui précise la place de la colonne au sein de la liste des
colonnes de la table et cette place correspondant généralement à celle définie lors de la
création. Toute nouvelle colonne étant rajoutée a la position la plus haute incrémentée
d'une unité. Cet ordre ordinal est utilisé notamment lors de l'insertion de données
(INSERT) lorsque l'on ne précise pas la liste des colonnes. Autre particularité : la
possibilité de définir les colonnes dans la clause de tri (ORDER BY) par leur ordre
positionnel dans la clause SELECT et non par leur nom...

La question bête qui revient sans cesse est : comment faire pour insérer une
colonne Z exactement entre la colonne X et la colonne Y ?
Simplement en recréant la table. Mais cette méthode, qui n'offre aucune certitude est
lourde à utiliser car il faut préserver les données dans une table temporaire avant de
détruire la table pour la recréer dans son architecture nouvelle.
D'ailleurs SQL n'offre aucune certitude quand à l'ordre de restitution des colonnes
lorsque, au lieu de spécifier les colonnes explicitement on utiliser le joker * !

Mais si vous vous obstinez à vouloir placer votre nouvelle colonne à la position n alors,
visitez la page : Changer le nom ou le type d'une colonne

7. Format de Date...

La notion de format de date n'existe pas en SQL ni dans les SGBDR. La date est stockée
sous un type DATE, qui, la plupart du temps est un entier et pour TIMESTAMP
(DATETIME) un réel. La partie entière étant le nombre de jours écoulés depuis une
certaine date. Ainsi dans SQL Server la date "origine" est le 1er janvier 1900 :

La partie fractionnaire compte le temps écoulé sur 24 heures. Par exemple 0,5 signifie
1er janvier 1900 à midi pour SQL Server.
Mais comment spécifier une date avec une expression littérale comme 21/01/2003
16h18m ?
Il convient d'écrire la date en littéral et de la transtyper en DATE ou DATETIME. Le
trsantypage peut être implicite ou explicite :

CREATE TABLE TEST
(MA_COLONNE VARCHAR(32))

INSERT INTO TEST VALUES ('abc')
INSERT INTO TEST VALUES ('def')
INSERT INTO TEST VALUES ('ghi')

DELETE TEST WHERE MA_COLONNE = 'def'

INSERT INTO TEST VALUES ('jkl')

SELECT * FROM TEST

MA_COLONNE

abc
jkl
ghi

CREATE MaTable
(ID INT,
 DT TIMESTAMP DEFAULT CURRENT_TIMESTAMP)

SELECT CAST(0 AS DATETIME) AS DATE_TEST
DATE_TEST

1900-01-01 00:00:00.000

Page 4 of 10Le SQL de A à Z - Les erreurs les plus fréquentes - Club d'entraide des développeurs f...

14/04/2008http://sqlpro.developpez.com/cours/sqlaz/erreurs/

Exemples :

Mais sur quel format la conversion va t-elle opérer ?

La plupart des SGBDR reposent sur le format normatif ISO de date qui spécifie :
AAAA-MM-JJ hh:mm:ss.xxx

Exemple :

Mais certains SGBDR proposent de pouvoir spécifier librement le format avec lequel on
veut travailler. Par exemple pour SQL Server il faut positionner le flag DATEFORMAT avec
le paramétrage souhaité. Ce flag peut prendre les valeurs : YMD, YDM, MDY, MYD, DYM,
DMY.
Voici comment sous SQL Server on précise l'utilisation des dates ISO :

Et voilà !

Pour d'autres problématiques de date, référez vous à l'article sur la gestion des
plannings : Calendrier, timing et horaires en SQL...

8. Dédoublonnage

8.1. DISTINCTROW ou l'exemple parfait de l'absurdité
d'Access !

Les quidams qui passent d'Access à un SGBDR qui respecte la norme SQL (car SQL est
un langage fortement normalisé : 1986, 1992, 1999, 2003 !) ne comprennent pas que
l'opérateur DISTINCTROW n'existe pas dans SQL... Rapellons à quoi sert ce mot clef
loufoque : "DISTINCTROW" concerne les requêtes qui utilisent au moins une jointure. Il
arrive que les tuples résultant apportent des données doublonnées dans le sous
ensemble des colonnes de la table mère. Pour empêcher cela Access nous invite à utiliser
le mot DISTINCTROW. Un exemple étant toujours plus compréhensible voici les élements
de notre jeu d'essai :

Soit une table T_PERSONNE_PRS contenant des "parents" :

et une table des enfants T_ENFANT_ENF :

Voici ce que donne la requete qui "met à plat" les informations :

Voici maintenant une requête qui donne un aperçu partiel des données jointes :

Comme on le voit, le nom DUPONT apparait trois fois, ce qui n'a pas d'intérêt car il est
impossible de savoir quelle ligne contenant le nom DUPONT appartient à la personne de
clef 1 ou 2 ou de l'enfant de clef 48, 57 ou 63...

Avec le mot clef DISTINCT (celui de la norme SQL) , nous obtenons :

SELECT CAST('21/01/2003 12:23' AS DATETIME) AS DATE_TEST => conversion explicite

INSERT INTO (ID, DATE_FIN) VALUES (33, '21/01/2003 12:23') => conversion implicite
car le colonne DATE_FIN est de type DATETIME

SELECT CAST('2003-01-21 12:33:00.000' AS DATETIME) AS DATE_TEST

SET DATEFORMAT YMD
SELECT CAST('2003-01-21 12:33:00.000' AS DATETIME) AS DATE_TEST

PRS_ID PRS_NOM PRS_DATE_NAISSANCE
--------- -------------- --------------------
1 DUPONT 21/05/1960
2 DUPONT 12/07/1972
3 DUVAL 16/11/1980

ENF_ID PRS_ID ENF_PRENOM
--------- -------------- --------------------
48 1 Camille
57 1 Alain
63 2 Marcel
78 3 Raoul

SELECT PRS.PRS_ID, PRS.PRS_NOM, PRS.PRS_DATE_NAISSANCE, ENF.ENF_ID, ENF.ENF_PRENOM
FROM T_PERSONNE_PRS PRS
 INNER JOIN T_ENFANT_ENF ENF
 ON PRS.PRS_ID = ENF.PRS_ID

PRS_ID PRS_NOM PRS_DATE_NAISSANCE ENF_ID ENF_PRENOM
--------- -------------- ------------------ ---------- ----------
1 DUPONT 21/05/1960 48 Camille
1 DUPONT 21/05/1960 57 Alain
2 DUPONT 12/07/1972 63 Marcel
3 DUVAL 16/11/1980 78 Raoul

SELECT PRS.PRS_NOM
FROM T_PERSONNE_PRS PRS
 INNER JOIN T_ENFANT_ENF ENF
 ON PRS.PRS_ID = ENF.PRS_ID

PRS_NOM

DUPONT
DUPONT
DUPONT
DUVAL

SELECT DISTINCT PRS.PRS_NOM
FROM T_PERSONNE_PRS PRS
 INNER JOIN T_ENFANT_ENF ENF
 ON PRS.PRS_ID = ENF.PRS_ID

PRS_NOM

Page 5 of 10Le SQL de A à Z - Les erreurs les plus fréquentes - Club d'entraide des développeurs f...

14/04/2008http://sqlpro.developpez.com/cours/sqlaz/erreurs/

Les lignes redondantes ont été éliminées, et c'est tant mieux !

Mais avec le mot Access DISTINCTROW, une surprise nous attend...

Mais comment cette ineptie est-elle possible ??? Je vous le demande !
Simplement parce qu'il y a deux DUPONT, l'un d'identifiant 1 et l'autre d'identifiant 2 et
c'est pourquoi vous vous retrouvez avec deux fois DUPONT, sans savoir à la lecture du
résultat à quel DUPONT correspond l'identifiant 1 ou 2 !!!

A quoi ça sert ? A rien, sinon à embrouiller le développeur car cet opérateur viole les
bases mêmes de la logique ensembliste sur laquelle repose les fondements des bases de
données.

8.2. Dédoublonnage partiel

En revanche, une question qui revient souvent est de pouvoir dédoublonner partiellement
un ensemble de données. Cette demande cache souvent une incompréhension globale de
la logique ensembliste des bases de données et une méconnaissance de SQL en
particulier.

Pour mieux comprendre cette demande, nous allons créer notre jeu de données :
Soit la table T_MACHINE_MCH et la table T_INCIDENT_ICD qui historise les incidents sur
les différentes machines :

Notre quidam voudrait récupérer le dernier incident ayant eût lieu (dans l'ordre
chronologique) sur chacune des machines, mais surtout, il voudrait récupérer l'identifiant
de ce dernier incident, afin de pouvoir parfaitement identifier les données concernant ces
incidents.

Voici la jointure des données entre les deux tables :

Ce que notre quidam veut obtenir, c'est la réponse suivante :

Autrement dit il voudrait dédoublonner sur les colonnes MCH_ID et MCH_NOM en
obtennant le MAX de ICD_DATEHEURE et les données de ICD_ID / ICD_NATURE...

Quelque chose comme :

Or DISTINCT n'est pas une fonction applicable à une colonne ou un groupe de colonne
particulier. DISTINCT concerne la totalité des données de la ligne résultante. Il faut donc
procéder par étape :

ÉTAPE N°1 : trouver les incidents ayant le MAX de la dateHeure pour chaque machine :

DUPONT
DUVAL

SELECT DISTINCTROW PRS.PRS_NOM
FROM T_PERSONNE_PRS PRS
 INNER JOIN T_ENFANT_ENF ENF
 ON PRS.PRS_ID = ENF.PRS_ID

PRS_NOM

DUPONT
DUPONT
DUVAL

CREATE TABLE T_MACHINE_MCH
(MCH_ID INTEGER NOT NULL PRIMARY KEY,
 MCH_NOM VARCHAR(16))

INSERT INTO T_MACHINE_MCH
 VALUES (1, 'Avion')
INSERT INTO T_MACHINE_MCH
 VALUES (2, 'Vélo')

CREATE TABLE T_INCIDENT_ICD
(ICD_ID INTEGER NOT NULL PRIMARY KEY,
 MCH_ID INTEGER NOT NULL FOREIGN KEY
 REFERENCES T_MACHINE_MCH (MCH_ID),
 ICD_NATURE VARCHAR(16),
 ICD_DATEHEURE TIMESTAMP)

INSERT INTO T_INCIDENT_ICD
 VALUES (63, 1, 'Arrêt réacteur', '2002-11-17 21:58:23')
INSERT INTO T_INCIDENT_ICD
 VALUES (78, 1, 'Panne APU', '2002-11-17 22:03:21')
INSERT INTO T_INCIDENT_ICD
 VALUES (79, 2, 'Crevaison', '2003-02-27 09:11:57')
INSERT INTO T_INCIDENT_ICD
 VALUES (82, 2, 'Casse chaine', '2003-03-04 11:22:33')
INSERT INTO T_INCIDENT_ICD
 VALUES (87, 2, 'Roue voilée', '2003-09-01 17:14:33')

SELECT MCH.MCH_ID, MCH_NOM, ICD_ID, ICD_NATURE, ICD_DATEHEURE
FROM T_MACHINE_MCH MCH
 INNER JOIN T_INCIDENT_ICD ICD
 ON MCH.MCH_ID = ICD.MCH_ID

MCH_ID MCH_NOM ICD_ID ICD_NATURE
ICD_DATEHEURE
----------- ---------------- ----------- ---------------- -----------------------
1 Avion 63 Arrêt réacteur 2002-11-17 21:58:23.000
1 Avion 78 Panne APU 2002-11-17 22:03:21.000
2 Vélo 79 Crevaison 2003-02-27 09:11:57.000
2 Vélo 82 Casse chaine 2003-03-04 11:22:33.000
2 Vélo 87 Roue voilée 2003-01-09 17:14:33.000

MCH_ID MCH_NOM ICD_ID ICD_NATURE
ICD_DATEHEURE
----------- ---------------- ----------- ---------------- -----------------------
1 Avion 78 Panne APU 2002-11-17 22:03:21.000
2 Vélo 82 Casse chaine 2003-03-04 11:22:33.000

SELECT DISTINCT(MCH.MCH_ID, MCH_NOM), ICD_ID, ICD_NATURE, MAX(ICD_DATEHEURE)
FROM T_MACHINE_MCH MCH
 INNER JOIN T_INCIDENT_ICD ICD
 ON MCH.MCH_ID = ICD.MCH_ID

MCH_ID MCH_NOM ICD_ID ICD_NATURE
ICD_DATEHEURE
----------- ---------------- ----------- ---------------- -----------------------
1 Avion 78 Panne APU 2002-11-17 22:03:21.000
2 Vélo 82 Casse chaine 2003-03-04 11:22:33.000

SELECT MAX(ICD_DATEHEURE) AS MAX_DH, MCH_ID
FROM T_INCIDENT_ICD
GROUP BY MCH_ID

MAX_DH MCH_ID
-- ------

Page 6 of 10Le SQL de A à Z - Les erreurs les plus fréquentes - Club d'entraide des développeurs f...

14/04/2008http://sqlpro.developpez.com/cours/sqlaz/erreurs/

ÉTAPE N°2 : relier ce résultat avec l'incident visé à l'aide d'une sous requête corrélée sur
l'identifiant de machine :

ÉTAPE N°3 : étendre ce résultat par jointure pour obtenir les informations sur les
machines :

Et voilà notre problème résolu.

Difficile de faire cela sans sous requêtes...

9. Cosmétique...

Je voudrais présenter mes données de telle manière. Comment faire cela avec
SQL ?

Un SGBDR n'est surtout pas fait pour faire du "cosmétique" !

La cosmétique (nom commun) signifie "qui est propre aux soins de beauté"...
Non, un SGBDR ne sert pas, et ne doit jamais servir, à traiter la présentation des
données. Une fois que les données sont là dans le résultat d'une requête, alors il suffit de
piocher ou l'on veut pour construire telle ou telle "facture" de présentation : en ligne, en
colonne, en tableau, en cube, a onglet, en relief, en hébreu et en couleur, si cela vous
fait plaisir, mais pas avec un SGBDR. L'ensemble de ces traitements doivent être
effectués par la couche client du serveur, c'est à dire, le programme exécutable ou un
objet d'un serveur d'application par exemple. MAIS PAS EN CODE SQL !!!
Le langage SQL n'est pas fait pour cela, et le SGBDR se révélera TOUJOURS un veau si
vous lui demandez de faire ce travail et tout le monde sera mécontent : vous d'abord,
car a la longue le temps de traitement sera désatsreux, lui ensuite (le SGBDR) parce qu'il
s'emmerdera a faire de la peinture alors que dans votre orchestre lui, c'est le piano, et
vous lui demander de jouer le triangle !

L'exemple le plus classique est le suivant... Je voudrais que mes données en colonnes
soient remise en ligne et tout cela dans une jolie requête !
Ben voyons...
Alors puisqu'il faut démontrer l'absurdité d'une telle chose, démontrons là...
Comme exemple nous allons nous intéresser au calcul du chiffre d'affaire par trimestre
en fonction des clients.

Voici une table des commandes :

CLI_ID étant la clef étrangère référençant le client.

Notre direction commerciale cherche à obtenir les chiffres des ventes par client et par
trimestre concernant l'année 2001...
La requête peut s'écrire :

2002-11-17 22:03:21.000 1
2003-03-04 11:22:33.000 2

SELECT ICD_ID, MCH_ID, ICD_NATURE, ICD_DATEHEURE
FROM T_INCIDENT_ICD ICD1
WHERE ICD_DATEHEURE = (SELECT MAX(ICD_DATEHEURE)
 FROM T_INCIDENT_ICD ICD2
 WHERE ICD2.MCH_ID = ICD1.MCH_ID)

ICD_ID MCH_ID ICD_NATURE
ICD_DATEHEURE
----------- ----------- ---------------- -----------------------
82 2 Casse chaine 2003-03-04 11:22:33.000
78 1 Panne APU 2002-11-17 22:03:21.000

SELECT ICD_ID, MCH.MCH_ID, ICD_NATURE, ICD_DATEHEURE, MCH_NOM
FROM T_INCIDENT_ICD ICD1
 INNER JOIN T_MACHINE_MCH MCH
 ON ICD1.MCH_ID = MCH.MCH_ID
WHERE ICD_DATEHEURE = (SELECT MAX(ICD_DATEHEURE)
 FROM T_INCIDENT_ICD ICD2
 WHERE ICD2.MCH_ID = ICD1.MCH_ID)

ICD_ID MCH_ID ICD_NATURE ICD_DATEHEURE
MCH_NOM
----------- ----------- ---------------- ---------------------------- -------
82 2 Casse chaine 2003-03-04 11:22:33.000 Vélo
78 1 Panne APU 2002-11-17 22:03:21.000 Avion

CREATE TABLE COMMANDE
(CMD_ID INTEGER,
 CLI_ID INTEGER,
 CMD_DATE DATE,
 CMD_MONTANT FLOAT)

INSERT INTO COMMANDE (CMD_ID, CLI_ID, CMD_DATE, CMD_MONTANT)
 VALUES (33, 1, '2000-10-18', 1287.22)
INSERT INTO COMMANDE (CMD_ID, CLI_ID, CMD_DATE, CMD_MONTANT)
 VALUES (101, 1, '2001-01-15', 7854.12)
INSERT INTO COMMANDE (CMD_ID, CLI_ID, CMD_DATE, CMD_MONTANT)
 VALUES (102, 1, '2001-03-10', 11474.25)
INSERT INTO COMMANDE (CMD_ID, CLI_ID, CMD_DATE, CMD_MONTANT)
 VALUES (103, 1, '2001-11-01', 3587.00)
INSERT INTO COMMANDE (CMD_ID, CLI_ID, CMD_DATE, CMD_MONTANT)
 VALUES (104, 2, '2001-02-02', 114472.89)
INSERT INTO COMMANDE (CMD_ID, CLI_ID, CMD_DATE, CMD_MONTANT)
 VALUES (105, 2, '2001-02-25', 858.21)
INSERT INTO COMMANDE (CMD_ID, CLI_ID, CMD_DATE, CMD_MONTANT)
 VALUES (106, 2, '2001-01-15', 7854.12)
INSERT INTO COMMANDE (CMD_ID, CLI_ID, CMD_DATE, CMD_MONTANT)
 VALUES (107, 2, '2001-05-11', 82462.05)
INSERT INTO COMMANDE (CMD_ID, CLI_ID, CMD_DATE, CMD_MONTANT)
 VALUES (108, 2, '2001-07-01', 61458.00)
INSERT INTO COMMANDE (CMD_ID, CLI_ID, CMD_DATE, CMD_MONTANT)
 VALUES (109, 2, '2001-12-01', 962.28)

SELECT CLI_ID,
 CASE
 WHEN (EXTRACT(MONTH FROM CMD_DATE) = 1)
 OR (EXTRACT(MONTH FROM CMD_DATE) = 2)
 OR (EXTRACT(MONTH FROM CMD_DATE) = 3) THEN 1
 WHEN (EXTRACT(MONTH FROM CMD_DATE) = 4)
 OR (EXTRACT(MONTH FROM CMD_DATE) = 5)

Page 7 of 10Le SQL de A à Z - Les erreurs les plus fréquentes - Club d'entraide des développeurs f...

14/04/2008http://sqlpro.developpez.com/cours/sqlaz/erreurs/

Bien entendu, notre service commercial préférerait avoir les résultats sous cette forme :

Cela permet de mieux se rendre compte que certains trimestres sont à zéro pour certains
clients, ce qui n'était pas évident dans la présentation venant de la réponse à notre
première requête.
Déterminer le chiffre d'affaires par client pour un trimestre déterminé n'est pas bien
difficile en SQL. Par exemple calculons-le pour le premier trimestre 2001 :

Il n'est pas possible, du fait des groupages nécessaire à l'agrégation de caculer les autres
trimestres dans la même requête. Mais il est possible de modifier la présentation pour la
faire correspondre au souhait de notre service commercial :

Rien ne nous empêche maintenant de répéter cette requête pour chacun des trimestres
et d'effectuer une union pour aboutir à une table plus proche de la demande :

Dès lors la solution saute aux yeux : il suffit de faire la somme de ces différents chiffres
d'affaire trimestriels par client. Cela est possible en imbriquant la précédente requête
dans une clause FROM d'un SELECT :

 OR (EXTRACT(MONTH FROM CMD_DATE) = 6) THEN 2
 WHEN (EXTRACT(MONTH FROM CMD_DATE) = 7)
 OR (EXTRACT(MONTH FROM CMD_DATE) = 8)
 OR (EXTRACT(MONTH FROM CMD_DATE) = 9) THEN 3
 WHEN (EXTRACT(MONTH FROM CMD_DATE) = 10)
 OR (EXTRACT(MONTH FROM CMD_DATE) = 11)
 OR (EXTRACT(MONTH FROM CMD_DATE) = 12) THEN 4
 END AS TRIMESTRE,
 SUM(CMD_MONTANT) AS CA
FROM COMMANDE
WHERE EXTRACT(YEAR FROM CMD_DATE) = 2001
GROUP BY CLI_ID,
 CASE
 WHEN (EXTRACT(MONTH FROM CMD_DATE) = 1)
 OR (EXTRACT(MONTH FROM CMD_DATE) = 2)
 OR (EXTRACT(MONTH FROM CMD_DATE) = 3) THEN 1
 WHEN (EXTRACT(MONTH FROM CMD_DATE) = 4)
 OR (EXTRACT(MONTH FROM CMD_DATE) = 5)
 OR (EXTRACT(MONTH FROM CMD_DATE) = 6) THEN 2
 WHEN (EXTRACT(MONTH FROM CMD_DATE) = 7)
 OR (EXTRACT(MONTH FROM CMD_DATE) = 8)
 OR (EXTRACT(MONTH FROM CMD_DATE) = 9) THEN 3
 WHEN (EXTRACT(MONTH FROM CMD_DATE) = 10)
 OR (EXTRACT(MONTH FROM CMD_DATE) = 11)
 OR (EXTRACT(MONTH FROM CMD_DATE) = 12) THEN 4
 END
ORDER BY CLI_ID, TRIMESTRE

CLI_ID TRIMESTRE CA
----------- ----------- -----------
1 1 19328.37
1 4 3587.0
2 1 123185.22
2 2 82462.05
2 3 61458.0
2 4 962.28

CLI_ID CA_TRIMESTRE_1 CA_TRIMESTRE_2 CA_TRIMESTRE_3 CA_TRIMESTRE_4
------ -------------- -------------- -------------- --------------
1 19328.37 3587.0
2 123185.22 82462.05 61458.0 962.28

SELECT CLI_ID, SUM(CMD_MONTANT) AS CA_T1
FROM COMMANDE
WHERE CMD_DATE BETWEEN '2001-01-01' AND '2001-03-31'
GROUP BY CLI_ID

CLI_ID CA_T1
----------- --------------
1 19328.37
2 123185.22

SELECT CLI_ID,
 SUM(CMD_MONTANT) AS CA_T1,
 0.0 AS CA_T2,
 0.0 AS CA_T3,
 0.0 AS CA_T2
FROM COMMANDE
WHERE CMD_DATE BETWEEN '2001-01-01' AND '2001-03-31'
GROUP BY CLI_ID

SELECT CLI_ID, SUM(CMD_MONTANT) AS CA_T1, 0.0 AS CA_T2, 0.0 AS CA_T3, 0.0 AS CA_T4
FROM COMMANDE
WHERE CMD_DATE BETWEEN '2001-01-01' AND '2001-03-31'
GROUP BY CLI_ID
UNION
SELECT CLI_ID, 0.0 AS CA_T1, SUM(CMD_MONTANT) AS CA_T2, 0.0 AS CA_T3, 0.0 AS CA_T4
FROM COMMANDE
WHERE CMD_DATE BETWEEN '2001-04-01' AND '2001-06-30'
GROUP BY CLI_ID
UNION
SELECT CLI_ID, 0.0 AS CA_T1, 0.0 AS CA_T2, SUM(CMD_MONTANT) AS CA_T3, 0.0 AS CA_T4
FROM COMMANDE
WHERE CMD_DATE BETWEEN '2001-07-01' AND '2001-09-30'
GROUP BY CLI_ID
UNION
SELECT CLI_ID, 0.0 AS CA_T1, 0.0 AS CA_T2, 0.0 AS CA_T3, SUM(CMD_MONTANT) AS CA_T4
FROM COMMANDE
WHERE CMD_DATE BETWEEN '2001-10-01' AND '2001-12-31'
GROUP BY CLI_ID

CLI_ID CA_T1 CA_T2 CA_T3 CA_T4
----------- ------------ --------------------------------------
1 0.0 0.0 0.0 3587.0
1 19328.38 0.0 0.0 0.0
2 0.0 0.0 0.0 962.28
2 0.0 0.0 61458.0 0.0
2 0.0 82462.05 0.0 0.0
2 123185.22 0.0 0.0 0.0

SELECT S.CLI_ID, SUM(S.CA_T1) AS CA_T1, SUM(S.CA_T2) AS CA_T2,
 SUM(S.CA_T3) AS CA_T3, SUM(S.CA_T4) AS CA_T4
FROM (SELECT CLI_ID, SUM(CMD_MONTANT) AS CA_T1, 0.0 AS CA_T2, 0.0 AS CA_T3, 0.0 AS
CA_T4
 FROM COMMANDE
 WHERE CMD_DATE BETWEEN '2001-01-01' AND '2001-03-31'

Page 8 of 10Le SQL de A à Z - Les erreurs les plus fréquentes - Club d'entraide des développeurs f...

14/04/2008http://sqlpro.developpez.com/cours/sqlaz/erreurs/

C'est à dire le résultat attendu, et comme les NULL sont ignorés par les calculs
d'agrégation, nous avons même de jolis zéros plus explicites que l'absence
d'information !

Comme on le voit, la première requête donne les même résultats que la dernière... Seule
la présentation à changée.... Mais cette dernière compte en fait 4 sous requêtes plus la
requête regroupant les sous requêtes soit 5 SELECT. Quel est à votre avis la plus
coûteuse des deux ?
Si vous utilisez un programme procédural pour faire cette présentation à partir de la
première requête, vous divisez le temps de traitement par un facteur énorme. Je
parierais entre 100 et 1000 fois plus rapide... Alors, à vous de juger !

Bémol

Toutefois il existe un bémol à une telle façon de faire. En effet, certains SGBDR (comme
certains outils de développement, Delphi par exemple) proposent un ensemble de
technique (ou de composant utilisant de telles techniques) dites ROLAP (Relational On
Line Analytical Process).
Dans ce cas, de telle requêtes sont facile à écrire en utilisant un agrégat spécial
(GROUPING) et les mots clef CUBE et ROLLUP. Mais là il ne s'agit plus de présentation
mais d'analyse multidimensionnelle ! Et votre base de données doit avoir été conçue pour
(étoile, flocon, nuage...).

10. Insertion multiple

Je n'arrive pas à insérer dans plusieurs tables à la fois ! Comment faire ?

Les ordres de manipulation des données (INSERT, UPDATE, DELETE) ne sont pas fait
pour travailler sur plus d'une table. Pourquoi ? Parce que dans la très grande majorité
des cas de relations entre entité, la cardinalité n'étant pas strictement 1:1, le SGBDR ne
peut pas retrouver ses petits ! D'ailleurs, même ce cas de relation 1:1 est... impossible,
sauf à se résumer à une seule et même table. En effet, considérons une table des
hommes et une des femmes et la relation obligatoire mariage avec cardinalité 1:1. Cela
signifie que tout homme est marié à une femme et une seule et que, de même, toute
femme est marié à un homme et un seul. Exit donc les célibataires et vive le mariage dès
la naissance...
Dès lors comment faire pour remplir notre table ? Si nous insérons un homme, la
contrainte d'intégrité référentielle nous impose de préciser l'épouse de cet homme. D'un
autre côté si nous tentons d'insérer une femme, alors il faut préciser son mari, ce qui
supposerait que son mari soit déjà inséré dans la table des hommes, sans liens avec
cette femme ce qui est impossible du fait de l'intégrité référentielle ! Donc, il est
impossible de saisir une quelconque donné dans ce modèle.

Alors nous devons le casser et par exemple définir une relation en 0:1. Des lors nous
pouvons insérer des données dans une des tables ou dans l'autre sans pour cela être
freiné par la contrainte d'intégrité référentielle. Mais cette insertion ne peut se faire dans
une seule table à la fois !

Le cas est encore plus frappant dans le cadre des relations 1:n ou n:m. En effet comment
insérer dans une table une seule ligne et dans les autres plusieurs lignes en un seul ordre
SQL ? Cela n'a pas de sens !

Alors comment faire pour insérer dans plusieurs tables à la fois en étant sûr que
toutes les insertions soient faites ? La solution nous est fournie par SQL : cela
s'apelle une transaction ! C'est pour cela qu'existe les transactions : jouer plusieurs
ordres SQL, les valider tous d'un coup ou les annuler tous d'un coup.

A lire sur les transactions : les transactions

 GROUP BY CLI_ID
 UNION
 SELECT CLI_ID, 0.0 AS CA_T1, SUM(CMD_MONTANT) AS CA_T2, 0.0 AS CA_T3, 0.0 AS
CA_T4
 FROM COMMANDE
 WHERE CMD_DATE BETWEEN '2001-04-01' AND '2001-06-30'
 GROUP BY CLI_ID
 UNION
 SELECT CLI_ID, 0.0 AS CA_T1, 0.0 AS CA_T2, SUM(CMD_MONTANT) AS CA_T3, 0.0 AS
CA_T4
 FROM COMMANDE
 WHERE CMD_DATE BETWEEN '2001-07-01' AND '2001-09-30'
 GROUP BY CLI_ID
 UNION
 SELECT CLI_ID, 0.0 AS CA_T1, 0.0 AS CA_T2, 0.0 AS CA_T3, SUM(CMD_MONTANT) AS
CA_T4
 FROM COMMANDE
 WHERE CMD_DATE BETWEEN '2001-10-01' AND '2001-12-31'
 GROUP BY CLI_ID) AS S
GROUP BY S.CLI_ID
ORDER BY S.CLI_ID

CLI_ID CA_T1 CA_T2 CA_T3 CA_T4
----------- ------------ ------------ ------------ -------------
1 19328.37 0.0 0.0 3587.0
2 123185.22 82462.05 61458.0 962.28

Livres

SQL - développement

SQL - le cours de référence sur le langage SQL

Avant d'aborder le SQL

Définitions

SGBDR fichier ou client/serveur ?

La base de données exemple (gestion d'un hôtel)

Modélisation MERISE

Mots réservés du SQL

Le SQL de A à Z

Page 9 of 10Le SQL de A à Z - Les erreurs les plus fréquentes - Club d'entraide des développeurs f...

14/04/2008http://sqlpro.developpez.com/cours/sqlaz/erreurs/

Copyright © 2004 Frédéric Brouard. Aucune reproduction, même partielle, ne peut être faite de ce site et de
l'ensemble de son contenu : textes, documents, images, etc sans l'autorisation expresse de l'auteur. Sinon vous
encourez selon la loi jusqu'à 3 ans de prison et jusqu'à 300 000 E de dommages et intérêts. Cette page est
déposée à la SACD.

Les fondements

Le simple (?) SELECT

Les jointures, ou comment interroger plusieurs tables

Groupages, ensembles et sous-ensembles

Les sous-requêtes

Insérer, modifier, supprimer

Création des bases

Gérer les privilèges ("droits")

Toutes les fonctions de SQL

Les techniques des SGBDR

Les erreur les plus fréquentes en SQL

Les petits papiers de SQLPro

Conférence Borland 2003

L'héritage des données

Données et normes

Modélisation par méta données

Optimisez votre SGBDR et vos requêtes SQL

Le temps, sa mesure, ses calculs

QBE, le langage de ZLOOF

Des images dans ma base

La jointure manquante

Clefs auto incrémentées

L'indexation textuelle

L'art des "Soundex"

Une seule colonne, plusieurs données

La division relationnelle, mythe ou réalité ?

Gestion d'arborescence en SQL

L'avenir de SQL

Méthodes et standards

Les doublons

SQL Server

Eviter les curseurs

Un aperçu de TRANSACT SQL V 2000

SQL Server 2000 et les collations

Sécurisation des accès aux bases de données SQL Server

Des UDF pour SQL Server

SQL Server et le fichier de log...

Paradox

De vieux articles publiés entre 1995 et 1999 dans la défunte revue Point DBF

Page 10 of 10Le SQL de A à Z - Les erreurs les plus fréquentes - Club d'entraide des développeur...

14/04/2008http://sqlpro.developpez.com/cours/sqlaz/erreurs/

