Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des dé... Page 1 of 26

Calendrier, timing et horaires en SQL...

Date de publication : 18/04/2004

Par SQLPro

niveau : intermédiaire

La gestion du temps et la manipulation des données temporelles sont les éléments les
plus ardus des développements.

Pour mettre toutes les chances de votre coté et passer d'un probléme complexe a une
solution presque enfantine, je vous propose d'étudier cette méthode basée sur la
modélisation d'un planning de dates...

Préambule

1. La solution normative

1.1. Les types temporels SQL 2

1.2. Mathématique normative des calculs temporels

1.2.1. Fonctions

1.2.2. Le prédicat OVERLAPS

1.2.3. Algebre temporelle

1.2.4. Logique temporelle

2. Le discours des éditeurs

3. La solution intelligente

3.1. Le modele de données

3.2. Les données du référentiel

3.3. Les mesures temporelles

3.3.1. Le nombre de ... jour, mois, annéé, trimestre, semestre
3.3.2. Comment ajouter exactement un deux ou trois mois, et pouvoir retomber sur nos
date en les y retranchant ?

3.3.3. Toutes les ... date, mois, années ... entre deux dates
4. Dates partielles

4.1. Dates composites

4.2. Fourchette de date

4.3. Affinage

5. Conclusion

6. ANNEXE - les scripts de création du modele de planning...
7. Pour en savoir plus sur le sujet

Préambule

La difficulté des calculs portant sur des dates ou des horaires (et parfois les deux) est lié
a la codification méme de la mesure du temps ainsi qu'au fait que le temps est une
entropie (disons le, méme une "isentroprie"), c'est a dire qu'il s'écoule de maniéere
uniforme (iso) et dans un seul sens irréversible (vers le futur).

La mesure du temps n'obéit pas a des régles conventionnelles, comme le comptage
décimal ou l'origine zéro. En effet :

e Les années comptent tantdt 365 tantot 366 jours en fait 365 jours 5 heures 48
min. 45,97 sec...

Les mois de 29 a 31 jours

Il n'y a pas d'année 0, mais il y a des années négatives (avant JC !)

Les siecles et millénaires commencent par une année unitaire (1, 1901, 2001...)
Les jours comptent 24 heures et il y a une heure zéro !

Les heures comptent 60 minutes et les minutes 60 secondes,

Il n'y a pas recouvrement éxact des semaines par rapport aux mois...

Les heures changent par rapport aux différents fuseaux horaires de la planete !
certaines opérations sur les dates sont impossible (par exemples rajouter
exactement 3 mois a une date)...

e le 10 octobre 1582 n'a jamais existé !!!

Tous ces éléments font que les calculs, notamment de comptage du temps obéissent a
des algorithmes complexes.

De ce fait, la norme SQL 2, propose une solution générale assez intelligente. Mais elle est
rarement implantée. Nous étudierons donc la norme, ce que propose les éditeurs et
finalement une solution basée sur des relations entre tables avec une table principale
stockant toutes les dates.

NOTA : il est dommage que le calendrier mis en place lors de la révolution frangaise n'ai
pas subsisté. L'année y étais divisé en 12 mois de 30 jours. Chaque semaine faisait 10
jours. Les 5 ou 6 jours restant étaient placés a la fin de I'année et constituait des
vancances... En quelques sortes, les révolutionnaires étaient en avance sur les congés
payés de 1936 et sur les 35 heures de la mére Aubry !

ATTENTION : La numérotation des semaines est standardisée depuis 1976 par I'l|SO,
avec les régles suivantes :

e Le lundi est considéré comme le premier jour de la semaine.

e Les semaines d'une méme année sont numérotées de 01 a 52 (parfois 53).
e La semaine qui porte le numéro 01 est celle qui contient le premier jeudi de

http://sglpro.developpez.com/cours/gestiontemps/

14/04/2008

Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des dé... Page 2 of 26

janvier.
e |l peut exister une semaine n°53 (années communes finissant un jeudi, bissextiles
finissant un jeudi ou un vendredi).

La numérotation des semaines aux USA, comme la numérotation des jours différe
totalement de cette norme !

1. La solution normative

Elle se compose de trois éléments : des types spécifiques, une algébre et des opérateurs
particuliers.

1.1. Les types temporels SQL 2

La norme propose les types :

DATE

TIME [WITH TIME ZONE]
TIMESTAMP [WITH TIME ZONE]
INTERVAL

La précision de TIME ZONE permet de définir le décalage du fuseau horaire par rapport a
I'heure universelle (UTC).

La norme SQL 2 impose en outre la représentation des dates et heures suivant le

masque :
HEURE DATE DATE et HEURE
hh:mm:ss.nnn AAAA-MM-JJ AA_AA_N!M_J‘]
hh:mm:ss.nnn

Avec des dates allant du premier janvier de I'an 1 au 31 décembre de I'an 9999.
NOTA : le typage rapide est permis et méme conseillé dans les expression temporelles.
En effet comment savoir si 21:16 fait référence a 21h16 ou 21 minutes et 16 secondes ?
Pour lever le doute, on peut, plutdt que d'utiliser la fonction CAST, préfixer la donnée :
Exemple :
TIME "00:21:16", DATE "2002-04-05*
Le type INTERVAL permet de stocker des durées. Sa syntaxe est de la forme :
nom_colonne INTERVAL mesure_tempsl [TO mesure_temps2]
dans laquelle mesure_temp peut étre :
YEAR | MONTH | DAY | HOUR | MINUTE | SECOND
avec les contraintes suivante :

e mesure_temps1 doit englober mesure_temp2

e mesure_temps2 et toutes les mesures intermédiaires entre mesure_tempsl1 et
mesure_temps2 ne peuvent "déborder”.

Exemples :
VALIDE NON VALIDE
DUREE1 INTERVAL DAY DUREE2 INTERVAL DAY TO DAY
DUREE3 INTERVAL YEAR TO DAY DUREE4 INTERVAL MINUTE TO HOUR
DUREES INTERVAL HOUR TO MINUTE DUREE6 INTERVAL DAY TO MONTH
CAST ("300:5:20" AS CAST("10:300:20" AS
INTERVAL HOUR TO SECOND) INTERVAL HOUR TO SECOND)

CAST ("2002-09-04 21:16* CAST ("4/9/2002 21h16*

INTERVAL YEAR TO MINUTE) INTERVAL YEAR TO MINUTE)

1.2. Mathématique normative des calculs temporels

1.2.1. Fonctions

Les fonctions CURRENT_DATE, CURRENT_TIME,CURRENT_TIMESTAMP permettent
de récupérer respectivement la date, I'heure et le combiné date/heure courantes depuis
le systéme. Attention, ce sont des fonctions non déterministes, c'est a dire que ré
exécutées plusieurs fois de suite, elles peuvent ne pas donner un résultat identique...

La fonction EXTRACT permet d'extraire une partie temporelle sous forme numérique
d'une donnée de type temporel.
La syntaxe de le fonction EXTRACT est la suivante :

EXTRACT({YEAR | MONTH | DAY | HOUR | MINUTE | SECOND } FROM donnée)

Exemples :

http://sglpro.developpez.com/cours/gestiontemps/ 14/04/2008

Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des dé... Page 3 of 26

EXTRACT (MONTH FROM ®2002-04-13%) 4
EXTRACT (MINUTE FROM "2002-04-13 21:16:11.050%) 16

1.2.2. Le prédicat OVERLAPS

Un outil puissant nous est fournit pas SQL avec le prédicat OVERLAPS. Il permet de
préciser si une période en recouvre (au moins partiellement) une autre. C'est tres
pratique si vous voulez gérer un diagramme de GANTT par exemple, ou il convient que
certaines taches ne démarrent pas avant la fin d'autres taches.

La syntaxe du prédicat OVERLAPS est la suivante :

(périodel) OVERLAPS (période2)
période ::
borne_debut, borne_fin

borne_debut ::
DATE | TIME | TIMESTAMP

borne_fin ::
DATE | TIME | TIMESTAMP | INTERVAL

Avec la contrainte suivante :

e borne_début et borne_fin doivent étre de méme type dans les périodes sauf si
borne_fin est de type INTERVAL.

Exemples :
VALIDE NON VALIDE

(TIME "08:11:25", TIME "09:25:11%) TIME "08:11:25", DATE "2002-01-01%)
OVERLAPS OVERLAPS

(TIME "09:11:25%, TIME "09:11:25%) (TIME "09:11:25", TIME "09:11:25%)
(DATE "2000-01-01", INTERVAL "100" DAY) (DATE "2000-01-01%, INTERVAL "100" DAY)
OVERLAPS OVERLAPS

(DATE "2000-04-01%, INTERVAL "1% DAY) (TIME "20:04:017, INTERVAL "1% DAY)
(TIMESTAVMP *2002-01-01 08:11:25-, (TIMESTAMP *2002-01-01 08:11:25-,
TIMESTAMP "2002-02-01 21:25:117) TIMESTAMP "2002-02-01 21:25:11%)
OVERLAPS OVERLAPS

(TIMESTAMP "2002-01-10 09:11:25", (INTERVAL "1 01:01:30" DAY TO SECOND,
INTERVAL "1 01:01:30" DAY TO SECOND) TIMESTAMP "2002-01-10 09:11:25%)

Maintenant penchons nous sur le résultat. OVERLAPS étant un prédicat il ne peut fournir
que... 3 valeurs : TRUE, FALSE et UNKNOWN (du fait de la présence possible de
marqueur NULL dans les données).

Le prédicat OVERLAPS est vrai si :

((périodel.borne_debut > période2.borne_debut

et (périodel.borne_debut < période2.borne_debut ou périodel.borne_fin <
période2._borne_fin)) ou
(période2.borne_debut > périodel.borne_debut

et (période2.borne_debut < périodel.borne_fin ou période2.borne_fin <
périodel.borne_fin)) ou
(périodel.borne_debut = période2.borne_debut et (périodel.borne_fin NON NUL et
période2.borne_fin NON NUL)

Ce qui peut se traduire en bon frangais par : la période P2 recouvre la période P1, si tout
ou partie de la période P2 est inclus dans la période P1.
ATTENTION : un effet de bord due a I'asymétrie du prédicat est a remarquer...

Un bon exemple valant mieux qu'un long discours, voici quelques données permettant de
mieux comprendre I'intérét de ce prédicat. Le jeu d'essais suivant va nous permettre de
mieux comprendre...

Les périodes dont définies comme suit :

al va de 8h a 9h et a2 de 8h30 a 9h30
bl va de 8h a 9h et b2 de 9h a 9h30

cl va de 9h a 9h30 et c2 de 9h & 9h

d1 va de 9h a 9h30 et d2 de 9h30 a 9h30
el va de 8h a 8h30 et e2 de 9h a 9h30
f1 va de 8h30 a 9h et f2 de 8h a 8h30

gl va de 8h30 a 10h et g2 de 8h a 9h

http://sglpro.developpez.com/cours/gestiontemps/ 14/04/2008

Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des dé... Page 4 of 26

ai

b1

el I——

e2

1
f2
gl
q2

8h 8h30 Sh 9h30 10h

Détails des intervalles de temps c2 et d

c1 [—

cZ

d2

On peut les modéliser ainsi :

CREATE TABLE PERIODE

(CODE CHAR(1),

P1_DEBUT TIME,

P1_FIN TIME,

P2_DEBUT TIME,

P2_FIN TIME)

INSERT INTO PERIODE (CODE, P1_DEBUT, P1_FIN, P2_DEBUT, P2_FIN)
VALUES ("a™, "08:00:007, "09:00:007, "08:30:00%, <09:30:00")
INSERT INTO PERIODE (CODE, P1_DEBUT, P1_FIN, P2_DEBUT, P2_FIN)
VALUES ("b~™, "08:00:007, "09:00:007, "09:00:00%, <09:30:00")
INSERT INTO PERIODE (CODE, P1_DEBUT, P1_FIN, P2_DEBUT, P2_FIN)
VALUES ("c™, "09:00:007, "09:30:00", "09:00:00%, <09:00:00")
INSERT INTO PERIODE (CODE, P1_DEBUT, P1_FIN, P2_DEBUT, P2_FIN)
VALUES ("d", "09:00:007, "09:30:00", "09:30:00%, <09:30:00")
INSERT INTO PERIODE (CODE, P1_DEBUT, P1_FIN, P2_DEBUT, P2_FIN)
VALUES ("e™, "08:00:007, "08:30:00", "09:00:00%, <09:30:00")
INSERT INTO PERIODE (CODE, P1_DEBUT, P1_FIN, P2_DEBUT, P2_FIN)
VALUES ("f", "08:30:00", "09:00:007, "08:00:00%, <08:30:00")
INSERT INTO PERIODE (CODE, P1_DEBUT, P1_FIN, P2_DEBUT, P2_FIN)
VALUES ("g~™, "08:30:00", "10:00:00", "08:00:00", <09:00:00")
La requéte suivante, donne :

CODE P1_DEBUT P1_FIN P2_DEBUT P2_FIN

SELECT * ———
FROM PERIODE a 08:00:00 09:00:00 08:30:00 09:30:00
WHERE P1_DEBUT, P1_FIN OVERLAPS P2_DEBUT, P2_FIN c 09:00:00 09:30:00 09:00:00 09:00:00

g 08:30:00 10:00:00 08:00:00 09:00:00

Seules, les périodes des exemples a, c et g répondent a I'opérateur OVERLAPS.

http://sglpro.developpez.com/cours/gestiontemps/ 14/04/2008

Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des dé... Page 5 of 26

Les périodes recouvrantes sont sur fond blanc, celle non recouvrantes sur fond gris.

L'explication est extraite de mon ouvrage, "SQL", la référence, collection développement,
Campus Press Editeur Paris 2001.

Par analogie, avec les données que nous venons de voir, il s'agit de considérer des
spectateurs qui seraient entrés dans une salle de cinéma pendant la projection d‘un film.
Le film se serait déroulé en période P1 et chaque spectateur aurait séjourné dans la salle
en période P2. Des lors tout devient clair : le prédicat OVERLAPS permet de savoir qui a
wvu le film, au moins en partie !

On constate au passage que quelqu'un qui ne reste qu'un temps infiniment court, c'est a
dire que la période est caractérisé par le fait que le début est égal a la fin, a vu le film, si
cet instant est inclus dans la limite [début, fin[de la période de référence. En effet s'il
arrive au début il est considéré comme ayant vu le film tandis que s'il arrive a la fin, il est
considéré comme n‘ayant pas vu le film. Ceci est logique, mais va a I'encontre de
I'intuition... C'est logique parce que le temps s'écoule de maniére uniforme dans un seul
sens ! On ne peut revenir en arriere et la mesure du temps ne peut qu‘augmenter
puisqu'allant toujours dans le sens du vieillissement On peut dire que I'écoulement du
temps est de nature isentropique, c'est a dire & entropie constante. En fait si on se livre a
un calcul mathématique aux limites on peut toujours partir d'un intervalle donné que I'on
restreint petit a petit pour arriver a une durée nulle. Si cet instant de durée infime
démarre au début d'un autre instant il reste toujours inclus dedans, tandis que s'il
démarre a la fin, il ne sera jamais inclus dedans ! La ou I'affaire se complique, c'est
quand une valeur au moins est nulle...

Bien entendu en I'absence d'un tel prédicat, vous pouvez le fabriquer de toutes pieces
par une construction SQL. En effet reformulé sous SQL, notre prédicat OVERLAPS est :

SELECT *
FROM PERIODE

WHERE (P1_DEBUT > P2_DEBUT AND (P1_DEBUT < P2_FIN OR P1_FIN < P2_FIN)) OR
(P2_DEBUT > P1_DEBUT AND (P2_DEBUT < P1_FIN OR P2_FIN < P1_FIN)) OR
(P1_DEBUT = P2_DEBUT AND (P1_FIN IS NOT NULL AND P2_FIN IS NOT NULL))

Et donne, bien évidemment le méme résultat que précédemment.

1.2.3. Algébre temporelle

Il est possible d'utiliser les opérations algébriques + - x et / avec quelques restrictions :

premier . second .
. opérateur . résultat

opérande opérande
TIMESTAMP | DATE || TIMESTAMP | DATE |
TIME TIME INTERVAL
TIMESTAMP | DATE | TIMESTAMP | DATE
TIME + INTERVAL | TIME
TIMESTAMP | DATE | TIMESTAMP | DATE
TIME i INTERVAL | TIME

TIMESTAMP | DATE | [TIMESTAMP | DATE

INTERVAL + IME | TIME
INTERVAL + INTERVAL INTERVAL
INTERVAL - INTERVAL INTERVAL

http://sglpro.developpez.com/cours/gestiontemps/ 14/04/2008

Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des dé... Page 6 of 26

INTERVAL * nombre INTERVAL
INTERVAL / nombre INTERVAL
nombre * INTERVAL INTERVAL
Exemples :
VALIDE NON VALIDE

DATE "2002-01-01°

DATE "2001-12-24°
- INTERVAL "8" DAY

DATE "2002-01-01*

TIMESTAMP "2001-12-24 16:12:30°
:???

INTERVAL "8 DAY
: "2001-12-16 16:12:30"

TIMESTAMP "2001-12-24 16:12:30"

DATE "2001-01-01*

DATE "2002-12-24°
oI 2?7

INTERVAL "7° DAY
/

DATE "2001-01-01*
x

2 o
o INTERVAL "3 12:00:00" DAY TO SECOND INTERVAL "27 DAY
1.2.4. Logique temporelle
Bien entendu la comparaison entre des types temporels est possible, mais dans certaines
limites.
Voici les différentes combinaisons possibles :
DATE [NOT] < <= = >= > <> |DATE
TIME [NOT] < <= = >= > <> |TIME
TIMESTAMP [NOT] < <= = >= > <> |TIMESTAMP
INTERVAL YEAR [NOT] < <= = >= > <> |INTERVAL YEAR
INTERVAL MONTH [NOT] < <= = >= > <> |[INTERVAL MONTH
INTERVAL YEAR TO MONTH |[NOT] < <= = >= > <> |INTERVAL YEAR TO MONTH
INTERVAL DAY [NOT] < <= = >= > <> |INTERVAL DAY
INTERVAL DAY TO HOUR [NOT] < <= = >= > <> |INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE [NOT] < <= = >= > <> |INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND [NOT] < <= = >= > <> |INTERVAL DAY TO SECOND
On pourra noter que tout interval comprenant le mois autrement qu'en borne de fin ne
peut faire I'objet d'une comparaion. Ceci est du au fait que le nombre de jours d'un mois
différe d'un mois a I'autre ce qui rend impossible la comparaison d'intervalle basé sur des
durée de mois...
2. Le discours des éditeurs
La complexité de la logique temporelle et du calcul de date ont fait que peu d'éditeurs de
SGBDR ont implémenté la norme de maniére drastique. Certains méme se contentent de
ne fournir que le type TIMESTAMP.
Quels sont alors les trucs qu'ils utilisent pour donner satisfaction & leurs clients.
SQL Server de Microsoft, n'inclut que le type DATETIME (équivalent du normatif
TIMESTAMP) et propose en sus, les cing fonctions suivantes : CURRENT_TIMESTAMP,
DATEPART, DATEADD, DATEDIFF et DATENAME (nous passerons sous silence les DAY,
MONTH, YEAR qui sont virtuellement inclus dans DATEPART).
CURRENT_TIMESTAMP bate et heure
_ courante
Equivalent du
DATEPART EXTRACT de la
norme
DATEADD Ajout de durée dans
date
DATEDIEF Retrait de durée
dans date
DATENAME Nom d'une partie de
date
Intéressons nous aux fonctions DATEADD et DATEDIFF. Leurs syntaxe est :
DATEADD | DATEDIFF (partie_de_date, nombre, date)
Exemple :
SELECT DATEADD(MONTH, 1, CAST("2002-01-31" AS DATETIME)) 2002-02-28
00:00:00.000
SELECT DATEADD(MONTH, -1, 2002-01-28
DATEADD(MONTH, 1, CAST("2002-01-31" AS DATETIME))) 00:00:00.000

L'ajout d'un mois au 31 janvier 2002 ne provoque pas un saut a mars, car l'algorithme

reprend bien la fin du mois suivant, soit le 28 février. Bravo SQL Server.

En revanche la seconde requéte est une abération... en effet I'ajout et le retrait imbriqué
d'un mois, donne une date décalée de 3 jours. C'est une catastrophe... Au secours SQL

Server 11

Néanmoins la solution SQL Server permet des calculs de base sur les données
temporelles pour peu que I'on prenne quelques précautions.

3. La solution intelligente

Elle consiste tout simplement & modéliser un planning avec non seulement une continuité
des dates exploitées dans la base mais un ensemble de tables "satellites" ayant chacune
un découpage du temps. Autrement dit, autour de la table des dates, une table des mois,

http://sglpro.developpez.com/cours/gestiontemps/

14/04/2008

Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des dé... Page 7 of 26

des jours de semaine (de 1 lundi & 7 dimanche), des jours du mois (de 1 a 28, 29, 30 ou
31) une table des années, des semestres, des trimestres, des semaines...

3.1. Le modéle de données

Voici un tel modéle MERISE :

hodéle Conceptuel de Dannées
Projet : PLANMING
Modéle : MCD complet
Auteur : F. BROUARD

Wersion 1 |09/09/2002

TR_PLN_SEMAINE_FSM

FSh ID [FLN SEMAINE

TR_PLN_ANNEE_FAN

1.n

o

FAN ID [PLH AHHEE
FAN_BISEXTILE D_FLNM_BOOLEEN
1.n

TR_PLN_JOUR_ANNEE_PJA

2applique™y

o.n

o1 |~ contient %

10
TR_FLN_JOUR_FERIE_MOBILE_FFM
FFM 1D D FLN ENTIER AUTOINC

PFM_LIBELLE 54

S8 nomme

0,1
T_FLN_JOUR_FJR iX]
D _FLN DATE
FJR_RANG_JOUR D_PLN_ENTIER_NAT_LONG
PJR_RANG_SEMAINE D_PLHN_RANG
FUR_RANG_MOIS D_FLN_RANG YL
FJR_RANG_TRIMESTRE [_FLN_RANG :
FJR_RANG_SEMESTRE D_PLN_RANG
FJR_RANG_AN D_PLN_RANG
01 | PIR_ALEA D_PLN_ENTIER_NAT_LONG =

! FJR DATE

1,n
TR_PLH_JOUR_SEMAINE_PJS
[_FLN JOUR SEMAINE

E,

o1

S

o1

1.n

1.n

1.n

contient
@

JS 1D
FJS_LIBELLE D_FLW_LIB_COURT

1,n
TR_PLN_JOUR_MOIS_PIM

TR_FLH_WOIS_FhS

a.n

FJbd 1D [PLN JOUR MOIS

FMS 1D
PMS_NOM_MOIS

L PLN mMOIS

D_PLN_LIB_COURT

travaille

on

TR_PLN_INTERVALLE_TRAVAIL_PIT
FIT HEURE DEBUT [FLM HEURE
FIT MINUTE GEBUT [FLN MINUTE
PIT_HEURE_FIN D_FLN_HEURE

PIT_MINUTE_FIN D_PLM_MINUTE

1.n

e repdte

(1,13

1.n

‘e ripite

.1

TR_PLN_JOUR_FERIE_FIXE_PJF

FJF_LIBELLE

b_FLN_LIB_LONG

On trouvera dans T_PLN_JOUR_PJR une entité composée d'une colonne clef représentant
les dates, une colonne rang numérotant les dates dans leur ordre chronologique a l'aide
d'une valeur discrete (entier), mais aussi les semaines, les mois les trimestres les
semestres et les années avec des valeurs continues (décimaux) et une colonne alea dont

je vous expliquerai un jour I'utilité !

J'y ai rajouté une petite entité "INTERVALLE_TRAVAIL" permettant de définir des plages
horaires d'ouverture de I'entreprise. Par exemple de 8h30 a 12h30 et de 14h a 18h du
lundi au jeudi et de 9h a 12h et de 14h a 16h le vendredi (cette entité étant liée avec les

jours de semaine).

Ce modéle aboutit a la représentation physi

que suivante :

BJA 1D L PLN JOUR AN

TR_PLN_TRIMESTRE_FTR

ETR ID

PTR_LIBELLE [D_PLN_LIB_COURT

L FLH TRIMESTRE

TR_FLN_SEMESTRE_PST

F5ST Ib L _FLN SEMESTRE
FST_LIBELLE D_PLN_LIB_COURT

Modéle Physiqus de Données TR_FLN_SEMAINE_PSM TR_FLN_ANNEE_FAN
Frojet : PLANNING PSM 1D zmallint PAN ID zmallint
Modile : MGD complet PAN_BISEXTILE bit
Auteur : F. BROUARD |WVersion 1 [09/09/2002
PSH_ID = FSM_ID RAN_ID = PAN_ID
TJ_PJRFFM T_PLN_JOUR_PJR
FJR DATE datetime (PR DATE datetime
FEM ID integer | PAR-DATE-RIRDATE i pap 1p smallint TR_PLN_JOUR_ANNEE_FJA
T FMS_ID smallint AT =mallint
FEMID = REM_ID PIM_ID smallint WEBE LY
PSM_ID smallint
PJS_ID =mallint TR_FLN_TRIMESTRE_FTR
P;;—IZL“—JDUR—FER'E—MDB'LF—:FM PJA_ID smallint FTR ID smallint
Integer FTR_ID smallint - = ETR_LIBELLE chan3z)
FFM_LIBELLE charEd) FETID emallint FTR_ID = FTR_ID =
PJR_RANG_JOUR int TR_FLN_SEMESTRE_PST
FJR_RANG_SEMAINE decimal(10,4) FST ID smallint
TR_PLN_JOUR_SEMAINE_FJS = =
=S = == PJR_RANG_MOIS decimali104) [par poper o | PST_LIBELLE char3z)
2ELT smallint FJR_RANG_TRIMESTRE decimali10.4) - -
[T FEEER char32) | pis 0= LS 0| pIR_RANG_SEMESTRE decimaltio, 4
PUR_RANG_AN decimal(10,.d)
PUS_ID = PIS_ID FJR_ALEA int
il 1 - T T
TI_PJSPIT FJM_ID = FIW_ID BNS D= PIS_ID
FJS 1D smallint
FIT HEURE DEBUT smallint TR_FLN_JOUR_MOIS_FJm TR_FLN_MOIS_FMS
FIT_MINUTE DEBUT smallint PdM_ID zmallint FMS (D smallint
|ELL_MINCTE DEBJT smallinf |
PIT_HEURE_DERUT = AIT_HEURE_DEAUT FME_HOM_MOIS char32)
PIT_MINUTE DEBUT = PIT_WINUTE_DEBUT
PdM_ID = RIM_ID FRE_I0=FRS_ID
TR_FLN_INTERWALLE_TRAVAIL_FIT 1 -
PIT HEURE DEBUT smallint TR_FLN_JOUR_FERIE_FIXE_PJF
FIT_MINUTE DEBUT smallint FMS D smallint
FIT_HEURE_FIN smallint Fun 1D smallint
PIT_MINUTE_FIN smallint FJF_LIBELLE varchar256)
Ou I'on voit que la table T_PLN_JOUR_PJR est garnie de 8 clefs étrangeres...
Le secret de ce modele et de son utilité, ce sont les colonnes PJR_RANG_... de la table

des dates. Nous allons voir ce qu‘on y met dedans, mais surtout, comment on s'en sert...

3.2. Les données du référentiel

Bien entendu, pour pouvoir fonctionner, un tel modele doit étre garni, c'est a dire que
toutes les tables doivent étre populées. En annexe vous trouverez les ordres SQL pour

créer cette base et la peupler.

Ce script et les deux procédures stockées (les procédures ont été écrites pour SQL Server

http://sglpro.developpez.com/cours/gestiontemps/

14/04/2008

Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des dé... Page 8 of 26

mais sont facilement transposable dans le langage procédurale de votre SGBDR ou dans
un langage comme DELPHI) permettent de peupler les tables référentielles, TR_* mais
aussi une partie de la table principale (T_PLN_JOUR_PJR), notamment les colonnes
PJR_DATE (date du jour), PAN_ID (année), PMS_ID (mois), PIM_ID (jour du mois de 1 a
31), PSM_ID (semaine de I'année de 1 a 52 ou 53), PJS_ID (jour de la semaine de 1 a
7), PJA_ID (jour de I'année de 1 a 365 ou 366) PTR_ID (trimestre de I'année) et PST_ID
(semestre de I'année).

3.3. Les mesures temporelles

Intéressons nous maintenant aux colonnes PJR_RANG_*.

Notre table est composée de lignes possédant chacune une valeur discréete : celle d'un
jour, d'une date dans la continuité du temps.

La colonne PJR_RANG_JOUR est donc numéroté en continue de facon a ce que chaque
lendemain soit incrémenté d'une unité. Autrement dit, PJR_RANG_JOUR + 1 équivaut a
ajouter un jour... Le type de données sous jacent a PJR_RANG_JOUR est donc un entier.
Mais il faut trouver une origine de numérotation. On peut la fixer arbitrairement, par
exemple au 14 octobre 1967 (c'est fou ce qu'on trouve a une date aussi arbitraire que
celle la lorqu'on cherche sur un moteur du web comme Yahoo [1]) mais I'habitude est de
se caler sur le premier janvier 1900 qui constitue le point d'origine de |'axe des dates et
par conséquent le jour 0.

Des lors nous allons avoir la numérotation suivante :

DATE RANG
1900-01-01 1

1900-01-02 2

1900-01-03 3

1900-12-31 365

1901-01-01 366

1901-01-02 367

1967-10-14 24757

1999-12-31 36523 => autrement dit 365 * 100 + 23 soit 23 anées
bisextiles !

2000-01-01 36524

2030-12-31 47846

La ou notre affaire se complique, c'est pour numéroter chaque jour en fraction de mois,
semaine, année...

En fait ce n'est pas trés compliqué.
Le premier jour d'une année, par exemple le jour de I'an de 1930 :

le rang de I'année est 30,0000

le rang du mois est 30*12 + 1 = 361,0000
le rang de la semaine est 1571, 000

le rang du trimestre est 30 * 4 + 1 = 121
le rang du semestre est 30 * 2 + 1 = 61

Pour le rang de la semaine, c'est un plus difficile car il faut compter le nombre de
semaines de chaque année, cela pouvant varier entre 52 et 53... Au passage notez les
décimales !

Le lendemain de ce jour, au 2 janvier 1930, les rang sont les suivants :

année : 30 + 1/365 (365, nombre de jours de I'année) = 30,0027

mois : 361 + 1/31 (31, nombre de jours du mois) = 361,0323

semaine : 1571 + 1/7 (7, nombre de jours de la semaine) = 1571,1429
trimestre : 121 + 1/90 (90, nombre de jour du trimestre) = 121,0111
semestre : 61 + 1/181 (181, nombre de jours du semestre) = 61,0055

Etc...

Voici une deux des requétes pour calculer ces nouvelles données. Elle concerne la mise a
jour du rang de I'année dans la table T_PLN_JOUR_PJR :

-- calcul du rang ANNEE
SELECT PJR_DATE,

— (SELECT CAST(PJR2.PJR_RANG_JOUR AS FLOAT)
FROM T_PLN_JOUR_PJR PJR2
WHERE ~PJR2.PJIM_ID = 1
AND PJR2.PMS_ID = 1
AND PJR2.PAN_ID = PJR.PAN_ID +1))
/ (SELECT CAST(COUNT(*) AS FLOAT)
FROM ~ T_PLN_JOUR_PJR PJR3 ES
WHERE PJR3.PAN_ID = PJR.PAN_ID)
AS DECIMAL(10,4)) AS PJR_RANG_AN
FROM T_PLN_JOUR_PJR PJR

CAST(=> le rang de l"année [1900 = 0]
(CAST(PAN_ID AS FLOAT) - 1899.0) => plus (le rang du jour
+ (CAST(PJR_RANG_JOUR AS FLOAT) => moins le nombre de jours

pour aller a I"année
suivante

) divisé par le nombre
de jours écoulés dans I"année

-- calcul du rang MOIS
SELECT PJR_DATE,

- (SELECT CAST(PJR2.PJR_RANG_JOUR AS FLOAT)
FROM T_PLN_JOUR_PJR PJR2
WHERE PJR2.PIM_ID =
AND PJR2.PMS_ID
AND PJR2.PAN_ID
CASE
WHEN PJR.PMS_ID + 1 = 13
THEN PJR.PAN_ID +1
ELSE PJR.PAN_ID
END)) >

1
(PIR.PMS_ID % 12) + 1

http://sglpro.developpez.com/cours/gestiontemps/

CAST(=> le rang du mois [12 mois par an]
(CAST(PAN_ID AS FLOAT) - 1900.0) * 12 + PMS_ID + 1 => plus (le rang du jour
+ (CAST(PJR_RANG_JOUR AS FLOAT) => moins le nombre de jours

pour aller au début du
mois suivant [attention
au passage de l"année
suivante]

) divisé par le nombre

14/04/2008

Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des dé... Page 9 of 26

/ (SELECT CAST(COUNT(*) AS FLOAT)
FROM T_PLN_JOUR_PJR PJR3
WHERE PJR3.PMS_ID = PJR.PMS_ID
AND PJR3.PAN_ID = PJR.PAN_ID)
AS DECIMAL(10,4)) AS PJR_RANG_MOIS
FROM T_PLN_JOUR_PJR PJR

de jours dans le mois

NOTA : j-ai utilisé ici la fonction %
qui fait le modulo.

-- calcul du rang SEMAINE
SELECT PJR_DATE,
CAST(
CAST(PSM_ID AS FLOAT)
+ (SELECT SUM(MAX_PSM_ID)
FROM (SELECT MAX(PSM_ID) AS MAX_PSM_ID
FROM T_PLN_JOUR_PJR
WHERE PAN_ID < PJR.PAN_ID
GROUP BY PAN_ID)

+ 51

T)
+ (CAST(PJS_ID AS FLOAT) - 1) / 7
AS DECIMAL(10,4)) AS PJR_RANG_SEMAINE
FROM T_PLN_JOUR_PJR PJR

On utilise ici une astuce vu que 1"on a toujours
le méme nombre de jour dans une semaine.

1l suffit donc de rajouter 1/7 a chaque jour,
les jours étant numéroté de 1 a 7. On a ainsi
(1 [pour lundi]l - 1) /7 7

(2 [pour mardi] - 1) /7 7

etc. ..

Ceci suppose quand méme que l1"on a bien
numéroté les semaines depuis I"origine

c"est a dire le premier janvier 1900,

sinon il faut y rajouter le nombre de semaines
cumulées que 1"on trouve en annexe

-- calcul du rang TRIMESTRE
SELECT PJR_DATE,
CAST((CAST(PAN_ID AS FLOAT) - 1900) * 4 + PTR_ID
+ (CAST((SELECT COUNT(*)
FROM T_PLN_JOUR_PJR PJR2
WHERE PJR2.PTR_ID = PJR.PTR_ID
AND PJR2.PAN_ID = PJR.PAN_ID
AND PJR2.PJR_DATE <= PJR.PJR_DATE)
AS FLOAT) - 1)
/ (CAST((SELECT COUNT(*)

FROM T_PLN_JOUR_PJR PJR3
WHERE PJR3.PTR_ID = PJR.PTR_ID
AND PJR3.PAN_ID = PJR.PAN_ID)

AS FLOAT))
AS DECIMAL(10,4)) AS RANG_TIMESTRE
FROM T_PLN_JOUR_PJR PJR

=> nombre de trimestre
=> plus (nombre de jours écoulé
depuis le début du trimestre

)d sé par le nombre de jours
du trimestre

-- calcul du rang SEMESTRE
SELECT PJR_DATE,
CAST((CAST(PAN_ID AS FLOAT) - 1900) * 2 + PST_ID
-- + nombre de jours écoulé
+ (CAST((SELECT COUNT(*)
FROM T_PLN_JOUR_PJR PJR2
WHERE PJR2.PST_ID = PJR.PST_ID
AND PJR2.PAN_ID = PJR.PAN_ID
AND PJR2.PJR_DATE <= PJR.PJR_DATE)
AS FLOAT) - 1)

-- divisé par le total de jours
/ (CAST((SELECT COUNT(*)
FROM T_PLN_JOUR_PJR PJR3
WHERE PJR3.PST_ID = PJR.PST_ID
AND PJR3.PAN_ID = PJR.PAN_ID) AS FLOAT))
AS DECIMAL(10,4)) AS RANG_SEMESTRE
FROM T_PLN_JOUR_PJR PJR

Pour les semestre le principe est le méme
que pour celui des trimestres.

Le 4 est changé en deux, et la requéte

porte sur la colonne PST_ID au lieu de PTR_ID

Bien évidemment ces requétes peuvent étre transformées en requétes de mise a jour
dont on trouvera une version en annexe...

Une fois ces données saisie dans notre table, les calculs sur les mesures temporelles
deviennent triviaux. Pour nous aider a voir comment cela fonctionne, nous allons ajouter
une table de test qui servira pour nos calculs.

Exemple :

[CREATE TABLE TEST_PLN
(DATE_DEBUT DATE,
DATE_FIN DATE)

"2003-05-1.
"2003-01-1.
"2006-12-2:
"2003-12-1.

INSERT INTO TEST_PLN VALUES ("2001-01-15%,
INSERT INTO TEST_PLN VALUES ("2003-01-15-,
INSERT INTO TEST_PLN VALUES ("2004-12-24%,
INSERT INTO TEST_PLN VALUES ("2002-11-117,

N W o o

9
9
9
D)

3.3.1. Le nombre de ... jour, mois, annéé, trimestre, semestre

Comment donc obtenir le nombre de... jour, mois, annéé, trimestre, semestre entre deux
dates ?

Le nombre de jours s'obtient par sous straction du rang jour. Mais pour faire cette
soustraction il faut deux valeurs de rang jour, donc, deux fois la table T_PLN_JOUR_PJR
dans la requéte :

SELECT DATE_DEBUT, DATE_FIN,
PJR2.PJR_RANG_JOUR - PJR1.PJR_RANG_JOUR AS NOMBRE_JOUR
TEST_PLN TPN
INNER JOIN T_PLN_JOUR_PJR PJR1
ON TPN.DATE_DEBUT = PJR1.PJR_DATE
INNER JOIN T_PLN_JOUR_PJR PJR2
ON TPN.DATE_FIN = PJR2.PJR_DATE

FROM

DATE_DEBUT DATE_FIN NOMBRE_JOUR

2001-01-15
2003-01-15
2004-12-24
2002-11-11

2003-05-18
2003-01-18
2006-12-23
2003-12-12

853
3

729
396

Bien entendu, les calculs de nombre de mois, années, etc... sont tout aussi triviaux :

SELECT DATE_DEBUT, DATE_FIN,
PJR2.PJR_RANG_JOUR -
PJR2.PJR_RANG_AN -
PJR2.PJR_RANG_MOIS -
PJR2.PJR_RANG_SEMAINE -
PJR2.PJR_RANG_TRIMESTRE -
TEST_PLN TPN
INNER JOIN T_PLN_JOUR_PJR
ON TPN.DATE_DEBUT = PJR1.PJR_DATE
INNER JOIN T_PLN_JOUR_PJR PJR2
ON TPN.DATE_FIN PJR2.PJR_DATE

PJR1.PJR_RANG_JOUR
PJR1.PJR_RANG_AN
PJR1.PJR_RANG_MOIS AS NOMBRE_MOIS,
PJR1.PJR_RANG_SEMAINE AS NOMBRE_SEMAINE,
PJR1.PJR_RANG_TRIMESTRE AS NOMBRE_TRIMESTRE

AS NOMBRE_JOUR,
AS NOMBRE_ANNEE,

FROM
PJR1

DATE_DEBUT DATE_FIN NOMBRE_JOUR NOMBRE_ANNEE
NOMBRE_TRIMESTRE

NOMBRE_MOIS ~ NOMBRE_SEMAINE

2001-01-15 2003-05-18 853 2.3369 28.0968 121.8571

9.3609

2003-01-15 2003-01-18 3 .0082 .0968 -4286 .0333
2004-12-24 2006-12-23 729 1.9972 23.9678 105.1429

7.9892

2002-11-11 2003-12-12 396 1.0849 13.0215 56.5714

http://sglpro.developpez.com/cours/gestiontemps/

14/04/2008

Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ... Page 10 of 26

J4.3369

3.3.2. Comment ajouter exactement un deux ou trois mois, et
pouvoir retomber sur nos date en les y retranchant ?

L'ajout et la soustraction sont presque aussi simple :

-- ajout de 10 jours a DATE DEBUT
SELECT DATE_DEBUT, PJR2.PJR_DATE
FROM TEST_PLN TPN
INNER JOIN T_PLN_JOUR_PJR PJR1
ON TPN.DATE_DEBUT = PJR1.PJR_DATE
INNER JOIN T_PLN_JOUR_PJR PJR2
ON PJR2.PJR_RANG_JOUR = PJR1.PJR_RANG_JOUR + 10

-- ajout de 5 mois

DATE_DEBUT DATE_PLUS_10_JOUR

2001-01-15 2001-01-25
2002-11-11 2002-11-21
2003-01-15 2003-01-25
2004-12-24 2005-01-03

SELECT DATE_DEBUT, MIN(PJR2.PJR_DATE) AS DATE_PLUS_5_MOIS DATE_DEBUT DATE_PLUS_5_MOIS
FROM TEST_PLN TPN
INNER JOIN T_PLN_JOUR_PJR PJR1 2001-01-15 2001-06-15
ON TPN_DATE_DEBUT = PJR1.PJR_DATE 2002-11-11 2003-04-11
INNER JOIN T_PLN_JOUR_PJR PJR2 2003-01-15 2003-06-15
ON PJR2.PJR_RANG_MOIS >= PJR1.PJR_RANG_MOIS + 5 2004-12-24 2005-05-24

GROUP BY TPN.DATE_DEBUT

DATE_DEBUT DATE_MOINS_3_TRIMESTRE
-- retrait de 3 trimestres

SELECT DATE_DEBUT, MAX(PJR2.PJR_DATE) AS DATE_MOINS_3_TRIMESTRE 2001-01-15 2000-04-15
FROM TEST_PLN TPN 2002-11-11 2002-02-10
INNER JOIN T_PLN_JOUR_PJR PJR1 2003-01-15 2002-04-15
ON TPN.DATE_DEBUT = PJR1.PJR_DATE 2004-12-24 2004-03-24
INNER JOIN T_PLN_JOUR_PJR PJR2 REMARQUE : la différence du jour du mois
ON PJR2.PJR_RANG_TRIMESTRE < PJR1.PJR_RANG_TRIMESTRE - 3 dans les dates s"explique par le fait
GROUP BY TPN.DATE_DEBUT que les trimestres n"ont pas tous le méme

nombre de jours...

NOTEZ la différence entre I'ajout de jours, toujours exact parce que sur des entiers, et
I'ajout de mois, année, trimestre, etc... qui, opérant sur des nombres réels doit faire
I'objet d'une inéquation pour laquelle on recherche le minimum.

Attention donc au signe de cet inéquation et a I'utilisation de I'agrégat :

AJOUT an, mois, semaine, |condition >= dans la condition >= dans la
trimestre, semestre jointure jointure
RETRAIT an, mois, semaine, |agrégat MAX dans le condition < dans la jointure
trimestre, semestre SELECT
Dernier essais, reprenons I'exemple vu avec SQL Server et ses limites de calculs
temporels...

INSERT INTO TEST_PLN VALUES ("2002-01-31%, NULL)

-- ajout d"un mois
SELECT DATE_DEBUT, MIN(PJR2.PJR_DATE) AS DATE_PLUS_1_MOIS
FROM TEST_PLN TPN
INNER JOIN T_PLN_JOUR_PJR PJR1
ON TPN.DATE_DEBUT = PJR1.PJR_DATE
INNER JOIN T_PLN_JOUR_PJR PJR2
ON PJR2.PJR_RANG_MOIS >= PJR1.PJR_RANG_MOIS + 1
GROUP BY TPN.DATE_DEBUT
-- retrait dun mois
SELECT DATE_DEBUT, MAX(PJR2.PJR_DATE) AS DATE_MOINS_1_MOIS
FROM TEST_PLN TPN
INNER JOIN T_PLN_JOUR_PJR PJR1
ON TPN.DATE_DEBUT = PJR1.PJR_DATE
INNER JOIN T_PLN_JOUR_PJR PJR2
ON PJR2.PJR_RANG_MOIS < PJR1.PJR_RANG_MOIS - 1
GROUP BY TPN.DATE_DEBUT

DATE_DEBUT DATE_PLUS_1_MOIS

2002-01-31 2002-03-01

REMARQUE : surprise, le mois de février
semble ignoré et I ajout d"un mois au 31
ljanvier passe au ler mars...

DATE_DEBUT DATE_MOINS_1_MOIS

2002-03-01 2002-01-31

SURPRISE : nous retombons sur nos pattes !

3.3.3. Toutes les ... date, mois, années ... entre deux dates

Autre demande qui revient souvent, connaitre toutes les dates, les mois, les années
entre deux dates :

SELECT DISTINCT DATE_DEBUT, PAN_ID, PMS_ID, DATE_FIN
FROM TEST_PLN TPN

INNER JOIN T_PLN_JOUR_PJR PJR

ON PJR.PJR_DATE BETWEEN TPN.DATE_DEBUT AND TPN.DATE_FIN

ORDER BY DATE_DEBUT, PAN_ID, PMS_ID
DATE_DEBUT PAN_ID PMS_ID DATE_FIN
2001-01-15 2001 1 2003-05-18
2001-01-15 2001 2 2003-05-18
2001-01-15 2001 3 2003-05-18
2001-01-15 2001 4 2003-05-18
2001-01-15 2001 5 2003-05-18
2001-01-15 2001 6 2003-05-18
2001-01-15 2001 7 2003-05-18
2001-01-15 2001 8 2003-05-18
2001-01-15 2001 9 2003-05-18
2001-01-15 2001 10 2003-05-18
2001-01-15 2001 11 2003-05-18
2001-01-15 2001 12 2003-05-18
2001-01-15 2002 1 2003-05-18
2001-01-15 2002 2 2003-05-18
2001-01-15 2002 3 2003-05-18
2001-01-15 2002 4 2003-05-18
2001-01-15 2002 5 2003-05-18
2001-01-15 2002 6 2003-05-18
2001-01-15 2002 7 2003-05-18
2001-01-15 2002 8 2003-05-18
2001-01-15 2002 9 2003-05-18
2001-01-15 2002 10 2003-05-18
2001-01-15 2002 11 2003-05-18
2001-01-15 2002 12 2003-05-18
2001-01-15 2003 1 2003-05-18
2001-01-15 2003 2 2003-05-18
2001-01-15 2003 3 2003-05-18
2001-01-15 2003 4 2003-05-18
2001-01-15 2003 5 2003-05-18

http://sglpro.developpez.com/cours/gestiontemps/ 14/04/2008

Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ... Page 11 of 26

2002-11-11 2002 11 2003-12-12
2002-11-11 2002 12 2003-12-12
2002-11-11 2003 1 2003-12-12
2002-11-11 2003 2 2003-12-12
2002-11-11 2003 3 2003-12-12
2002-11-11 2003 4 2003-12-12
2002-11-11 2003 5 2003-12-12
2002-11-11 2003 6 2003-12-12
2002-11-11 2003 7 2003-12-12
2002-11-11 2003 8 2003-12-12

9

2002-11-11 2003 2003-12-12
2002-11-11 2003 10 2003-12-12
2002-11-11 2003 11 2003-12-12
2002-11-11 2003 12 2003-12-12
2003-01-15 2003 1 2003-01-18
2004-12-24 2004 12 2006-12-23
2004-12-24 2005 1 2006-12-23
2004-12-24 2005 2 2006-12-23
2004-12-24 2005 3 2006-12-23
2004-12-24 2005 4 2006-12-23
2004-12-24 2005 5 2006-12-23
2004-12-24 2005 6 2006-12-23
2004-12-24 2005 7 2006-12-23
2004-12-24 2005 8 2006-12-23
2004-12-24 2005 9 2006-12-23
2004-12-24 2005 10 2006-12-23
2004-12-24 2005 11 2006-12-23
2004-12-24 2005 12 2006-12-23
2004-12-24 2006 1 2006-12-23
2004-12-24 2006 2 2006-12-23

2004-12-24 2006 3 2006-12-23
2004-12-24 2006 4 2006-12-23
2004-12-24 2006 5 2006-12-23
2004-12-24 2006 6 2006-12-23
7
8

2004-12-24 2006 2006-12-23
2004-12-24 2006 2006-12-23
2004-12-24 2006 9 2006-12-23
2004-12-24 2006 10 2006-12-23
2004-12-24 2006 11 2006-12-23
2004-12-24 2006 12 2006-12-23

Cela peut paraitre inutile... c'est souvent indispensable.

Voici un exemple qui illustre I'absolu nécessité d'une table de dates. Notre service SAV
fait des interventions en principe tous les jours. La table et les données associées sont
les suivantes et concerne la semaine allant du lundi 4 mars au vendredi 8 mars :

CREATE TABLE T_SAV

(SAV_ID INTEGER NOT NULL PRIMARY KEY,
SAV_DATE_INTERV DATE,

SAV_NATURE_INTERV VARCHAR(32),

SAV_RESOLUE BIT(1) NOT NULL DEFAULT 0)

INSERT INTO T_SAV VALUES(1, "2002-03-04%, “Imprimante bloquée®, 1)

INSERT INTO T_SAV VALUES(2, "2002-03-04", "Ecran HS", 0)

INSERT INTO T_SAV VALUES(3, "2002-03-05", "Disque défectueux, changé®, 1)
INSERT INTO T_SAV VALUES(4, "2002-03-06", "Clavier cassé, remplacé", 1)
INSERT INTO T_SAV VALUES(5, "2002-03-06", “Lecteur CD HS", 0)

INSERT INTO T_SAV VALUES(6, "2002-03-08", "Base de registre endommagé®, 0)
INSERT INTO T_SAV VALUES(7, "2002-03-08", "Souris encrassée”, 1)

INSERT INTO T_SAV VALUES(8, "2002-03-08", "Lecteur bande encrassé", 1)

Notre directeur du SAV veut savoir quel est le volume des interventions pour chaque jour
de la semaine, et effectue ma requéte suivante :

NOMBRE SAV_DATE_INTERV
SELECT COUNT(*) AS NOMBRE, SAV_DATE_INTERV > 2002-03-04
FROM T_SAv 1 2002-03-05
GROUP BY SAV_DATE_INTERV > 2002-03-06
3 2002-03-08
Surprise ! La semaine ne compterai que 4 jours du lundi au vendredi ??? Ou est passé le
jeudi 7 ? 1l n'existe pas dans la table car aucune intervention n'a e(t lieu ce jour. Il aurait
fallut quand méme obtenir cette date avec une valeur O pour le nombre d'interventions...
Quelque chose comme :
NOMBRE SAV_DATE_INTERV
2 2002-03-04
1 2002-03-05
2 2002-03-06
0 2002-03-07 <= ligne manquante. ..
3 2002-03-08
Afin de remédier a cette anomalie, il suffit de faire une jointure avec la table des dates :
SELECT COUNT(SAV_ID) AS NOMBRE,
PJR_DATE NOMBRE PJR_DATE
FROM T_SAV e
RIGHT OUTER JOIN T_PLN_JOUR_PJR 2 2002-03-04
ON PJR_DATE = SAV_DATE_INTERV 1 2002-03-05
WHERE PJR_DATE BETWEEN (SELECT MIN(SAV_DATE_INTERV) FROM T_SAV) 2 2002-03-06
AND (SELECT MAX(SAV_DATE_INTERV) FROM T_SAV) 0 2002-03-07
GROUP BY PJR_DATE 3 2002-03-08

ORDER BY PJR_DATE

L'erreur est encore plus criante si I'on tente de mesurer la moyenne du nombre
d'intervention par jour :

SELECT AVG(CAST(NOMBRE AS FLOAT)) AS MOYENNE_JOUR
FROM (SELECT COUNT(*) AS NOMBRE, SAV_DATE_INTERV
FROM T_SAV
GROUP BY SAV_DATE_INTERV) T

MOYENNE_JOUR

Or 8 interventions sur 5 jours, cela représente 1,6 intervention par jour et non 2 ! Une
statistique faussée par ce “trou".
Encore une fois la solution nous est fournit par la jointure sur la table des dates :

SELECT AVG(CAST(NOMBRE AS FLOAT))

FROM (SELECT COUNT(SAV_ID) AS NOMBRE,
PJR_DATE

FROM T_SAV
RIGHT OUTER JOIN T_PLN_JOUR_PJR

http://sglpro.developpez.com/cours/gestiontemps/

MOYENNE_JOUR

14/04/2008

Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ... Page 12 of 26

ON PJR_DATE = SAV_DATE_INTERV 1.6000000000000001
WHERE PJR_DATE BETWEEN (SELECT MIN(SAV_DATE_INTERV) FROM T_SAV)

AND (SELECT MAX(SAV_DATE_INTERV) FROM T_SAV)
GROUP BY PJR_DATE) T

4. Dates partielles

Il arrive que I'on doive stocker des dates dont certaines parties sont inconnues ou
imprécises. Plusieurs solutions sont envisageables : I'utilisation de données séparées
pour les éléments composant les dates ou bien I'utilisation d'une fourchette de dates.

4.1. Dates composites

Cette solution consiste a représenter les dates sous la forme de 3 colonnes : AN, MOIS et
JOUR. L'important est de spécifier que ces colonnes peuvent étre vide... Autrement dit il
ne faut pas construire ces colonnes avec |'option NOT NULL.

Exemples :

CREATE TABLE T_DATES_PARTIELLES_DTP
(C

DTP_AN INTEGER,
DPT_MOIS INTEGER,
DPT_JOUR INTEGER)

A l'insertion comme lors des mises a jour on veillera a ne stocker que les éléments
connus des dates.

Voici maintenant comment les requétes doivent se présenter dans différents cas de
figure :

Rechercher les zigzornifles datés du 4/5/1990 :

SELECT ..

FROM ...

WHERE DPT_JOUR = 4
AND DPT_MOIS = 5
AND DPT_AN = 1990

Les zigzornifles datant de mai 1990 :

SELECT ..

FROM ...

WHERE DPT_MOIS = 5
AND DPT_AN = 1990

Les zigzornifles de I'an 1990 :

SELECT ..
FROM ...
WHERE DPT_AN = 1990

Les zigzornifles entre le 4/5/1990 et le 8/7/1990 :

SELECT ..

FROM ..

WHERE (COALESCE(DPT_JOUR, 0),
COALESCE(DPT_MOIS, 0),
COALESCE(DPT_AN, 0)) >= (4, 5, 1990)

AND (COALESCE(DPT_JOUR, 0),
COALESCE(DPT_MOIS, 0),
COALESCE(DPT_AN, 0)) <= (8, 7, 1990)

Mais si votre SGBDR ne supporte pas le constructeur de lignes valuées, alors il faut écrire
un équivalent SQL.

SELECT ..
FROM ..
WHERE (COALESCE(DPT_JOUR, 0) >= 4
OR (COALESCE(DPT_JOUR, 0) = 4
AND COALESCE(DPT_MOIS, 0) >= 5)
OR (COALESCE(DPT_JOUR, 0) = 4
AND COALESCE(DPT_MOIS, 0) = 5
AND COALESCE(DPT_AN, 0)) >= 1990))
AND (COALESCE(DPT_JOUR, 0) <= 8
OR (COALESCE(DPT_JOUR, 0) = 8
AND COALESCE(DPT_MOIS, 0) <= 7)
(COALESCE(DPT_JOUR, 0) = 8
AND COALESCE(DPT_MOIS, 0) = 7
AND COALESCE(DPT_AN, 0)) <= 1990))

o]

o

Sur le constructeur de lignes valuées, lire : Constructeur de ligne valuées (ROW VALUE
CONSTRUCTOR)

4.2. Fourchette de date

La seconde technique consiste a créer deux colonnes de date afin de définir un
intervalle. Voici un exemple du modele de table :

Exemples :

CREATE TABLE T_DATES_INCOMPLETE_DTI
(C

DT1_DATE_MIN DATE,
DTI_DATE_MAX DATE)

Si la date est compléte, on veillera a la recopier dans les deux colonnes. Pour cela on eut
s'aider d'un trigger pour qu'en cas de présence du NULL dans la seconde date on

http://sglpro.developpez.com/cours/gestiontemps/

14/04/2008

Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ... Page 13 of 26

reprenne la valeur de la premiére date.

A l'insertion, comme a la mise a jour, la partie de date qui est inconnue doit prendre la
plage maximale des valeurs. Par exemple si nous voulons insérer un brandouillon daté de
juin 1990 sans que nous en connaissions le jour, il convient d'insérer de la maniére
suivante :

INSERT INTO T_DATES_INCOMPLETE_DTI (..., DTI_DATE_MIN DATE, DTI_DATE_MAX DATE)
VALUES (..., "1990-06-01" , "1990-06-30")

Voici maintenant comment les requétes doivent se présenter dans différents cas de
figure :

Rechercher les brandouillons datés du 4/5/1990 :

SELECT ...

FROM ...

WHERE DPI1_DATE_MIN
AND DPT_DATE_MIN

SELECT ...

FROM ...

WHERE DPI_DATE_MAX = "1990-05-04°

AND DPT_DATE_MIN = DATE_MAX

Les deux requétes devant donner les mémes résultats.

"1990-05-04"
DATE_MAX

Les brandouillons datant de mai 1990 :

SELECT ..

FROM ...

WHERE DPI_DATE_MIN >= "1990-05-01"
AND DPI_DATE_MAX <= "1990-05-31"

Les brandouillons de I'an 1990 :

SELECT ..

FROM ...

WHERE DPI_DATE_MIN >= "1990-01-01"
AND DPI_DATE_MAX <= "1990-12-31"°

Les brandouillons entre le 4/5/1990 et le 8/7/1990 :

SELECT ..

FROM ...

WHERE DPI_DATE_MIN >= "1990-05-04"
AND DPI_DATE_MAX <= "1990-07-08"

4.3. Affinage

Ces deux modeéles possédent néanmoins un inconvénient... En effet, si notre utilisateur
veut reprendre dans sa requéte les bidules situées entre le 4/5/1990 et le 8/7/1990, il
convient de se demander si un zirzornifle ou un brandouillon daté de mai 1990 sans
précision de jour doit figurer dans le résultat !

Car I'abscence de la connaissance du jour, ne signifie nullement qu'il est obligatoirement
inférieur au 4 mai 1990...

Dans ce cas, que I'on pourrait apeller “critere externe”, lever cette ambiguité peut étre
fait de différentes manieres...

Dans la premiére représentation (dates composites) une simple modification de la
requéte suffit :

SELECT ..

FROM ...

WHERE (COALESCE(DPT_JOUR, 31),
COALESCE(DPT_MOIS, 5),
COALESCE(DPT_AN, 0)) >= (4, 5, 1990)

AND (COALESCE(DPT_JOUR, 1),
COALESCE(DPT_MOIS, 7),
COALESCE(DPT_AN, 0)) <= (8, 7, 1990)

Les valeurs du coalesce sont, dans le premier prédicat de filtrage le dernier jour du mois
et le mois de la borne basse du filtre, dans le second prédicat le premier jour du mois et
le mois de la borne haute du filtre.

Le probléme est plus complexe concernat la seconde représentation. En effet I'indication
de I'imprécision de la date nous est donné par le fait que DTI_DATE_MIN est différent de
DTI_DATE_MAX.

1l faut alors réaliser une requéte plus complexe :

SELECT ..

FROM ..

-- date exacte

WHERE (DPI1_DATE_MIN >= ®1990-05-04"
AND DPI_DATE_MAX <= "1990-07-08"
AND DPI_DATE_MIN = DPI_DATE_MAX)

-- date partiel

OR (DPI_DATE_M >= "1990-05-01"
AND DPI_DATE_MAX <= "1990-07-31"
AND DPI_DATE_MIN <> DPI_DATE_MAX)

Dans le second prédicat, on reprend les dates de début de mois de la borne basse et de
fin de mois de la borne haute si les dates min et max sont différentes.

5. Conclusion

Voici un ensemble de données et ses régles qui marchent de maniére irréprochable afin
de traiter tous les cas de figure de manipulation portant sur des dates. Bien entendu
vous pouvez transformer ces requétes en procédures stockées voire en fonction

http://sglpro.developpez.com/cours/gestiontemps/

14/04/2008

Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ...

utilisateurs si votre SGBDR en est doté.

Mais, peut étre le volume de données a manipuler vous effraye t-il ?

A titre d'indication, sous SQL server v7 le volume des données pour 30 années de dates
(2000 a 2030), soit plus de 11 300 lignes, représente : 6 Mo index compris... Pour 130
années, c'est a dire les dates de 1900 a 2030 le volume des données est de 15Mo... (plus
de 47 500 lignes). Quand son sait que la clef de cette table est une date et se trouve
organisée généralement en cluster, on ne manipule jamais plus de 1 Mo de données si

I'on ne fait pas de calculs sur une plage de dates de plus de 5 & 6 ans.

6. ANNEXE - les scripts de création du modéle de

planning...

/* */
/* Nom de la base : PLN_PLANNING */
/* Nom de SGBD : SQL 2 - standard 1SO 1992 */
/* Date de création : 04/08/2002 17:50 */
/* */

-- version avec domaines

CREATE DOMAIN D_PLN_ANNEE SMALLINT
CONSTRAINT CKD_ANNEE CHECK (VALUE BETWEEN 1 AND 9999)

CREATE DOMAIN D_PLN_BOOLEEN bit(1)

CREATE DOMAIN D_PLN_DATE DATE

CREATE DOMAIN D_PLN_ENTIER_AUTOINC INTEGER
CONSTRAINT CKD_ENTIER CHECK (VALUE >= 1)

CREATE DOMAIN D_PLN_ENTIER_NAT_LONG INTEGER
CONSTRAINT CKD_ENTIER_LONG CHECK (VALUE >= 1)

CREATE DOMAIN D_PLN_HEURE SMALLINT
CONSTRAINT CKD_HEURE CHECK (VALUE BETWEEN O AND 24)

CREATE DOMAIN D_PLN_HEURE_DECIMALE FLOAT
CONSTRAINT CKD_HEURE_DEC CHECK (VALUE BETWEEN O AND 24)

CREATE DOMAIN D_PLN_JOUR_AN SMALLINT
CONSTRAINT CKD_JOUR_AN CHECK (VALUE BETWEEN 1 AND 366)

CREATE DOMAIN D_PLN_JOUR_MOIS SMALLINT
CONSTRAINT CKD_JOUR_MOIS CHECK (VALUE BETWEEN 1 AND 31)

CREATE DOMAIN D_PLN_JOUR_SEMAINE SMALLINT
CONSTRAINT CKD_JOUR_SEMAINE CHECK (VALUE 1 AND 7)

CREATE DOMAIN D_PLN_LIB_COURT CHAR(32)

CREATE DOMAIN D_PLN_LIB_LONG VARCHAR(256)

CREATE DOMAIN D_PLN_MINUTE SMALLINT
CONSTRAINT CKD_MINUTE CHECK (VALUE BETWEEN O AND 60)

CREATE DOMAIN D_PLN_MOIS SMALLINT
CONSTRAINT CKD_MOIS CHECK (VALUE BETWEEN 1 AND 12)

CREATE DOMAIN D_PLN_SEMAINE SMALLINT
CONSTRAINT CKD_SEMAINE CHECK (VALUE BETWEEN 1 AND 53)

CREATE DOMAIN D_PLN_SEMESTRE SMALLINT
CONSTRAINT CKD_SEMESTRE CHECK (VALUE BETWEEN 1 AND 2)

CREATE DOMAIN D_PLN_TRIMESTRE SMALLINT
CONSTRAINT CKD_TRIMESTRE CHECK (VALUE BETWEEN 1 AND 4)

CREATE DOMAIN D_PLN_RANG DECIMAL (10,4)
CONSTRAINT CKD_RANG CHECK (VALUE > 0)

Vid */
/* Table : TR_PLN_ANNEE_PAN */
Vad */

create table TR_PLN_ANNEE_PAN

PAN_ID T_D_PLN_ANNEE not null,

PAN_BISEXTILE T_D_PLN_BOOLEEN not null,

constraint PK_TR_PLN_ANNEE_PAN primary key (PAN_ID)
b}
/* */
/* Table : TR_PLN_MOIS_PMS */
/* */
create table TR_PLN_MOIS_PMS

PMS_ID T_D_PLN_MOIS not null,

PMS_NOM_MOIS T_D_PLN_LIB_COURT not null,

constraint PK_TR_PLN_MOIS_PMS primary key (PMS_ID)

http://sglpro.developpez.com/cours/gestiontemps/

Page 14 of 26

14/04/2008

Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ... Page 15 of 26

/>

/* Table : TR_PLN_JOUR_MOIS_PJM
7

create table TR_PLN_JOUR_MOIS_PJM

PIM_ID T_D_PLN_JOUR_MOIS

constraint PK_TR_PLN_JOUR_MOIS_PJM primary key (PJM_ID)

/>

not null,

/* Table : TR_PLN_SEMAINE_PSM
7

create table TR_PLN_SEMAINE_PSM

PSM_ID T_D_PLN_SEMAINE

constraint PK_TR_PLN_SEMAINE_PSM primary key (PSM_

/>

not null

/* Table : TR_PLN_JOUR_FERIE_MOBILE_PFM
7x

create table TR_PLN_JOUR_FERIE_MOBILE_PFM
[¢

*/
*/
*/

*/
*/
*/

PFM_ID T_D_PLN_ENTIER_AUTOINC not null,
PFM_LIBELLE char(64) not null,
constraint PK_TR_PLN_JOUR_FERIE_MOBILE_PF primary key (PFM_ID)
)
/*

/* Table : TR_PLN_JOUR_SEMAINE_PJS

create table TR_PLN_JOUR_SEMAINE_PJS
(C

PJS_ID T_D_PLN_JOUR_SEMAINE
PJS_LIBELLE T_D_PLN_LIB_COURT

constraint PK_TR_PLN_JOUR_SEMAINE_PJS primary key (PJS_ID)

not null,
not null,

/* Table : TR_PLN_JOUR_ANNEE_PJA

create table TR_PLN_JOUR_ANNEE_PJA

PJA_ID T_D_PLN_JOUR_AN

constraint PK_TR_PLN_JOUR_ANNEE_PJA primary key (PJA_ID)

not null,

/%

/* Table : TR_PLN_TRIMESTRE_PTR

/%

create table TR_PLN_TRIMESTRE_PTR
PTR_ID T_D_PLN_TRIMESTRE not null,
PTR_LIBELLE T_D_PLN_LIB_COURT not null,
constraint PK_TR_PLN_TRIMESTRE_PTR primary key (PTR_ID)

D

/*

/* Table : TR_PLN_SEMESTRE_PST

/*

create table TR_PLN_SEMESTRE_PST
PST_ID T_D_PLN_SEMESTRE not null,
PST_LIBELLE T_D_PLN_LIB_COURT not null,
constraint PK_TR_PLN_SEMESTRE_PST primary key (PST_ID)

/*

/* Table : TR_PLN_INTERVALLE_TRAVAIL_PIT

/%

create table TR_PLN_INTERVALLE_TRAVAIL_PIT

(C
PIT_HEURE_DEBUT T_D_PLN_HEURE not null,
PIT_MINUTE_DEBUT T_D_PLN_MINUTE not null

default 0,
PIT_HEURE_FIN T_D_PLN_HEURE not
PIT_MINUTE_FIN T_D_PLN_MINUTE not null
default O,

constraint PK_TR_PLN_INTERVALLE_TRAVAIL_P
PIT_MINUTE_DEBUT)

primary key (PIT_HEURE_DEBUT,

b}

/*

/* Table : T_PLN_JOUR_PJR

/%

create table T_PLN_JOUR_PJR

(C
PJR_DATE T_D_PLN_DATE not null,
PAN_ID T_D_PLN_ANNEE null)
PMS_ID T_D_PLN_MOIS null)
PJIM_ID T_D_PLN_JOUR_MOIS null)
PSM_ID T_D_PLN_SEMAINE null s
PJS_ID T_D_PLN_JOUR_SEMAINE null)
PJA_ID T_D_PLN_JOUR_AN null s
PTR_ID T_D_PLN_TRIMESTRE null)
PST_ID T_D_PLN_SEMESTRE null s
PJR_RANG_JOUR T_D_PLN_ENTIER_NAT_LONG not null,
PJR_RANG_SEMAINE T_D_PLN_RANG null s
PJR_RANG_MOIS T_D_PLN_RANG null)
PJR_RANG_TRIMESTRE ~T_D_PLN_RANG null s
PJR_RANG_SEMESTRE ~ T_D_PLN_RANG null)
PJR_RANG_AN T_D_PLN_RANG null s
PJR_ALEA T_D_PLN_ENTIER_NAT_LONG not null,
constraint PK_T_PLN_JOUR_PJR primary key (PJR_DATE)

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/
*/
*/

http://sglpro.developpez.com/cours/gestiontemps/

14/04/2008

Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ... Page 16 of 26

/* */
/* Table : TR_PLN_JOUR_FERIE_FIXE_PJF */
/* */

create table TR_PLN_JOUR_FERIE_FIXE_PJF
(C

PMS_ID T_D_PLN_MOIS
PIM_ID T_D_PLN_JOUR_MOIS not null,
PJF_LIBELLE T_D_PLN_LIB_LONG not null,
constraint PK_TR_PLN_JOUR_FERIE_FIXE_PJF primary key (PMS_ID, PJM_ID)

b}

/* */

/* Table : TJ_PJRPFM */

/* */

create table TJ_PJRPFM

(C
PJR_DATE T_D_PLN_DATE not null,

PFM_ID T_D_PLN_ENTIER_AUTOINC not null,
constraint PK_TJ_PJRPFM primary key (PJR_DATE, PFM_ID)

)

/* */

/* Table : TJ_PJSPIT */

/* */

create table TJ_PJSPIT
PJS_ID T_D_PLN_JOUR_SEMAINE not null,
PIT_HEURE_DEBUT T_D_PLN_HEURE not null,
PIT_MINUTE_DEBUT T_D_PLN_MINUTE not null

default 0,

constraint PK_TJ_PJSPIT primary key (PJS_ID, PIT_HEURE_DEBUT, PIT_MINUTE_DEBUT)

alter table T_PLN_JOUR_PJR
add constraint FK_T_PLN_JO_L_PJRPAN_TR_PLN_A foreign key (PAN_ID)
references TR_PLN_ANNEE_PAN (PAN_ID)

alter table T_PLN_JOUR_PJR
add constraint FK_T_PLN_JO_L_PJRPMS_TR_PLN_M foreign key (PMS_ID)
references TR_PLN_MOIS_PMS (PMS_ID)

alter table T_PLN_JOUR_PJR
add constraint FK_T_PLN_JO_L_PJRPIM_TR_PLN_J foreign key (PJM_ID)
references TR_PLN_JOUR_MOIS_PJM (PJM_ID)

alter table T_PLN_JOUR_PJR
add constraint FK_T_PLN_JO_L_PJRPSM__TR_PLN_S foreign key (PSM_ID)
references TR_PLN_SEMAINE_PSM (PSM_ID)

alter table T_PLN_JOUR_PJR
add constraint FK_T_PLN_JO_L_PJRPJS_TR_PLN_J foreign key (PJS_ID)
references TR_PLN_JOUR_SEMAINE_PJS (PJS_ID)

alter table T_PLN_JOUR_PJR
add constraint FK_T_PLN_JO_L_PJRPJA_TR_PLN_J foreign key (PJA_ID)
references TR_PLN_JOUR_ANNEE_PJA (PJA_ID)

alter table T_PLN_JOUR_PJR
add constraint FK_T_PLN_JO_L_PJRPTR_TR_PLN_T foreign key (PTR_ID)
references TR_PLN_TRIMESTRE_PTR (PTR_ID)

alter table T_PLN_JOUR_PJR
add constraint FK_T_PLN_JO_L_PJRPST_TR_PLN_S foreign key (PST_ID)
references TR_PLN_SEMESTRE_PST (PST_ID)

alter table TR_PLN_JOUR_FERIE_FIXE_PJF
add constraint FK_TR_PLN_J_L_PJFPIM_TR_PLN_J foreign key (PJM_ID)

references TR_PLN_JOUR_MOIS_PJM (PJM_ID)

alter table TR_PLN_JOUR_FERIE_FIXE_PJF
add constraint FK_TR_PLN_J_L_PJFPMS_TR_PLN_M foreign key (PMS_ID)
references TR_PLN_MOIS_PMS (PMS_ID)

alter table TJ_PJRPFM
add constraint FK_TJ_PJRPF_L_PJRPFM_T_PLN_JO foreign key (PJR_DATE)
references T_PLN_JOUR_PJR (PJR_DATE)

alter table TJ_PJRPFM
add constraint FK_TJ_PJRPF_L_PFMPJR_TR_PLN_J foreign key (PFM_ID)
references TR_PLN_JOUR_FERIE_MOBILE_PFM (PFM_ID)

alter table TJ_PJSPIT
add constraint FK_TJ_PJSPI_L_PJSPIT_TR_PLN_J foreign key (PJS_ID)
references TR_PLN_JOUR_SEMAINE_PJS (PJS_ID)

alter table TJ_PJSPIT
add constraint FK_TJ_PJSPI_L_PITPJS_TR_PLN_I foreign key (PIT_HEURE_DEBUT,
PIT_MINUTE_DEBUT)
references TR_PLN_INTERVALLE_TRAVAIL_PIT (PIT_HEURE_DEBUT, PIT_MINUTE_DEBUT)

/* n"oubliez pas d"indexer toutes les colonnes constituant clefs primaires et clefs
étrangeres 111 */

/* */
/* Nom de la base : PLN_PLANNING */
VAl Nom de SGBD : SQL 2 - standard 1SO 1992 */
/* Date de création : 04/08/2002 17:50 */
/* */

http://sglpro.developpez.com/cours/gestiontemps/ 14/04/2008

Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ... Page 17 of 26

-- version sans les domaines (les contraintes de domaine sont
-- reportées en contraintes de table)

/* */
/* Table : TR_PLN_ANNEE_PAN */
/* */
create table TR_PLN_ANNEE_PAN
(C

PAN_ID smallint not null

constraint CKC_PAN_ID_TR_PLN_A check (PAN_ID between 1 and 9999),

PAN_BISEXTILE bit not null

constraint PK_TR_PLN_ANNEE_PAN primary key (PAN_ID)
b}
/* */
/* Table : TR_PLN_MOIS_PMS */
/* */
create table TR_PLN_MOIS_PMS
(C

PMS_ID smallint not null

constraint CKC_PMS_ID_TR_PLN_M check (PMS_ID between 1 and 12),

PMS_NOM_MOIS char(32) not null,

constraint PK_TR_PLN_MOIS_PMS primary key (PMS_ID)
b}
/* */
/* Table : TR_PLN_JOUR_MOIS_PJM */
/* */

create table TR_PLN_JOUR_MOIS_PJM

PJIM_ID smallint not null
constraint CKC_PJIM_ID_TR_PLN_J check (PJM_ID between 1 and 31),
constraint PK_TR_PLN_JOUR_MOIS_PJM primary key (PJIM_ID)

’* */
/* Table : TR_PLN_SEMAINE_PSM */
/* */

create table TR_PLN_SEMAINE_PSM

PSM_ID smallint not null
constraint CKC_PSM_ID_TR_PLN_S check (PSM_ID between 1 and 53),
constraint PK_TR_PLN_SEMAINE_PSM primary key (PSM_ID)

/* */
/* Table : TR_PLN_JOUR_FERIE_MOBILE_PFM */
/* */
create table TR_PLN_JOUR_FERIE_MOBILE_PFM

PFM_ID integer not null

constraint CKC_PFM_ID_TR_PLN_J check (PFM_ID >= 1),

PFM_LIBELLE char(64) not null,

constraint PK_TR_PLN_JOUR_FERIE_MOBILE_PF primary key (PFM_ID)
)
/* */
/* Table : TR_PLN_JOUR_SEMAINE_PJS */
/* */
create table TR_PLN_JOUR_SEMAINE_PJS
(C

PJS_ID smallint not null

constraint CKC_PJS_ID_TR_PLN_J check (PJS_ID between 1 and 7),

PJS_LIBELLE char(32) not null,

constraint PK_TR_PLN_JOUR_SEMAINE_PJS primary key (PJS_ID)
)
/* */
/* Table : TR_PLN_JOUR_ANNEE_PJA */
/* */

create table TR_PLN_JOUR_ANNEE_PJA

PJA_ID smallint not null
constraint CKC_PJA_ID_TR_PLN_J check (PJA_ID between 1 and 366),
constraint PK_TR_PLN_JOUR_ANNEE_PJA primary key (PJA_ID)

/* */
/* Table : TR_PLN_TRIMESTRE_PTR */
/* */
create table TR_PLN_TRIMESTRE_PTR
PTR_ID smallint not null
constraint CKC_PTR_ID_TR_PLN_T check (PTR_ID between 1 and 4),
PTR_LIBELLE char(32) not null,
constraint PK_TR_PLN_TRIMESTRE_PTR primary key (PTR_ID)
)
/* */
/* Table : TR_PLN_SEMESTRE_PST */
/* */
create table TR_PLN_SEMESTRE_PST
PST_ID smallint not null
constraint CKC_PST_ID_TR_PLN_S check (PST_ID between 1 and 2),
PST_LIBELLE char(32) not null,
constraint PK_TR_PLN_SEMESTRE_PST primary key (PST_ID)
)
/* */
/* Table : TR_PLN_INTERVALLE_TRAVAIL_PIT */
/* */
create table TR_PLN_INTERVALLE_TRAVAIL_PIT
PIT_HEURE_DEBUT smallint not null
constraint CKC_PIT_HEURE_DEBUT_TR_PLN_I check (PIT_HEURE_DEBUT between O
and 24),
PIT_MINUTE_DEBUT smallint not null

http://sglpro.developpez.com/cours/gestiontemps/ 14/04/2008

Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ... Page 18 of 26

default O
constraint CKC_PIT_MINUTE_DEBUT_TR_PLN_I check (PIT_MINUTE_DEBUT between O
and 60),
PIT_HEURE_FIN smallint not null
constraint CKC_PIT_HEURE_FIN_TR_PLN_I check (PIT_HEURE_FIN between O and
24),
PIT_MINUTE_FIN smallint not null
default O
constraint CKC_PIT_MINUTE_FIN_TR_PLN_1 check (PIT_MINUTE_FIN between O and
60),

constraint PK_TR_PLN_INTERVALLE_TRAVAIL_P primary key (PI1T_HEURE_DEBUT,
PIT_MINUTE_DEBUT)

)

/* */
/* Table : T_PLN_JOUR_PJR */
/* */

create table T_PLN_JOUR_PJR
(C

PJR_DATE not null,
PAN_ID null

constraint CKC_PAN_ID_T_PLN_JO check (PAN_ID between 1 and 9999),
PMS_ID smallint null

constraint CKC_PMS_ID_T_PLN_JO check (PMS_ID between 1 and 12),
PJIM_ID smallint null

constraint CKC_PJM_ID_T_PLN_JO check (PJM_ID between 1 and 31),
PSM_ID null

constraint check (PSM_ID between 1 and 53),
PJS_ID null

constraint check (PJS_ID between 1 and 7),
PJA_ID null

constraint check (PJA_ID between 1 and 366),
PTR_ID smallint null

constraint CKC_PTR_ID_T_PLN_JO check (PTR_ID between 1 and 4),
PST_ID smal null

constraint CKC_PST_ID_T_PLN_JO check (PST_ID between 1 and 2),
PJR_RANG int not null

constraint CKC_PJR_RANG_T_PLN_JO check (PJR_RANG >= 1),
PJR_RANG_SEMAINE decimal (10,4) null)
PJR_RANG_MOIS decimal (10,4) null .
PJR_RANG_TRIMESTRE decimal (10,4) null)
PJR_RANG_SEMESTRE decimal (10,4) null .
PJR_RANG_AN decimal (10,4) null .
PJR_ALEA int not null

constraint CKC_PJR_ALEA_T_PLN_JO check (PJR_ALEA >= 1),
constraint PK_T_PLN_JOUR_PJR primary key (PJR_DATE)

b}
/* */
/* Table : TR_PLN_JOUR_FERIE_FIXE_PJF */
/* */
create table TR_PLN_JOUR_FERIE_FIXE_PJF
PMS_ID smallint not null
constraint CKC_PMS_ID_TR_PLN_J check (PMS_ID between 1 and 12),
PIM_ID smallint not null
constraint CKC_PJM_ID_TR_PLN_J check (PJM_ID between 1 and 31),
PJF_LIBELLE varchar(256) not null,
constraint PK_TR_PLN_JOUR_FERIE_FIXE_PJF primary key (PMS_ID, PJM_ID)
)
/* */
/* Table : TJ_PJRPFM */
/* */
create table TJ_PJRPFM
(C
PJR_DATE datetime not null,
PFM_ID integer not null

constraint CKC_PFM_ID_TJ_PJRPF check (PFM_ID >= 1),
constraint PK_TJ_PJRPFM primary key (PJR_DATE, PFM_ID)

)
/* */
/* Table : TJ_PJSPIT */
/* */
create table TJ_PJSPIT
PJS_ID smallint not null
constraint CKC_PJS_ID_TJ_PJSPI check (PJS_ID between 1 and 7),
P1T_HEURE_DEBUT smallint not null
constraint CKC_PIT_HEURE_DEBUT_TJ_PJSPI check (PIT_HEURE_DEBUT between O
and 24),
PIT_MINUTE_DEBUT smallint not null
default 0
constraint CKC_PIT_MINUTE_DEBUT_TJ_PJSPI check (PIT_MINUTE_DEBUT between O
and 60),

constraint PK_TJ_PJSPIT primary key (PJS_ID, PIT_HEURE_DEBUT, PIT_MINUTE_DEBUT)
D

alter table T_PLN_JOUR_PJR
add constraint FK_T_PLN_JO_L_PJRPAN_TR_PLN_A foreign key (PAN_ID)
references TR_PLN_ANNEE_PAN (PAN_ID)

alter table T_PLN_JOUR PJR
add constraint FK_T_PLN_JO_L_PJRPMS_TR_PLN_M foreign key (PMS_ID)
references TR_PLN_MOIS_PMS (PMS_ID)

alter table T_PLN_JOUR_PJR
add constraint FK_T_PLN_JO_L_PJRPIM_TR_PLN_J foreign key (PJM_ID)
references TR_PLN_JOUR_MOIS_PJM (PJM_ID)

alter table T_PLN_JOUR_PJR
add constraint FK_T_PLN_JO_L_PJRPSM__TR_PLN_S foreign key (PSM_ID)
references TR_PLN_SEMAINE_PSM (PSM_ID)

alter table T_PLN_JOUR_PJR

http://sglpro.developpez.com/cours/gestiontemps/

14/04/2008

Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ... Page 19 of 26

add constraint FK_T_PLN_JO_L_PJRPJS_TR_PLN_J foreign key (PJS_ID)
references TR_PLN_JOUR_SEMAINE_PJS (PJS_ID)

alter table T_PLN_JOUR_PJR
add constraint FK_T_PLN_JO_L_PJRPJA_TR_PLN_J foreign key (PJA_ID)
references TR_PLN_JOUR_ANNEE_PJA (PJA_ID)

alter table T_PLN_JOUR_PJR
add constraint FK_T_PLN_JO_L_PJRPTR_TR_PLN_T foreign key (PTR_ID)
references TR_PLN_TRIMESTRE_PTR (PTR_ID)

alter table T_PLN_JOUR_PJR
add constraint FK_T_PLN_JO_L_PJRPST_TR_PLN_S foreign key (PST_ID)
references TR_PLN_SEMESTRE_PST (PST_ID)

alter table TR_PLN_JOUR_FERIE_FIXE_PJF
add constraint FK_TR_PLN_J_L_PJFPIM_TR_PLN_J foreign key (PJM_ID)

references TR_PLN_JOUR_MOIS_PJM (PJM_ID)

alter table TR_PLN_JOUR_FERIE_FIXE_PJF
add constraint FK_TR_PLN_J_L_PJFPMS_TR_PLN_M foreign key (PMS_ID)

references TR_PLN_MOIS_PMS (PMS_ID)

alter table TJ_PJRPFM
add constraint FK_TJ_PJRPF_L_PJRPFM_T_PLN_JO foreign key (PJR_DATE)
references T_PLN_JOUR_PJR (PJR_DATE)

alter table TJ_PJRPFM
add constraint FK_TJ_PJRPF_L_PFMPJR_TR_PLN_J foreign key (PFM_ID)
references TR_PLN_JOUR_FERIE_MOBILE_PFM (PFM_ID)

alter table TJ_PJSPIT
add constraint FK_TJ_PJSPI_L_PJSPIT_TR_PLN_J foreign key (PJS_ID)
references TR_PLN_JOUR_SEMAINE_PJS (PJS_ID)

alter table TJ_PJSPIT
add constraint FK_TJ_PJSPI_L_PITPJS_TR_PLN_I foreign key (PIT_HEURE_DEBUT,
PIT_MINUTE_DEBUT)
references TR_PLN_INTERVALLE_TRAVAIL_PIT (PIT_HEURE_DEBUT, PIT_MINUTE_DEBUT)

/* n"oubliez pas d"indexer toutes les colonnes constituant clefs primaires et clefs
étrangéeres 111 */

/* */
/* ALIMENTATION DES REFERENCES DE LA BASE PLANNING */
/* */
/* */
/* ALIMENTATION DES REFERENCES DE LA BASE PLANNING */
/* */
/* insertion des données table TR_PLN_MOIS_PMS */

INSERT INTO TR_PLN_MOIS_PMS VALUES (1, "janvier®)
INSERT INTO TR_PLN_MOIS_PMS VALUES (2,
INSERT INTO TR_PLN_MOIS_PMS VALUES (3,
INSERT INTO TR_PLN_MOIS_PMS VALUES (4,
INSERT INTO TR_PLN_MOIS_PMS VALUES (5, iv)
INSERT INTO TR_PLN_MOIS_PMS VALUES (6, "juin®)
INSERT INTO TR_PLN_MOIS_PMS VALUES (7, “juillet")
INSERT INTO TR_PLN_MOIS_PMS VALUES (8, "aoQt")
INSERT INTO TR_PLN_MOIS_PMS VALUES (9, “septembre®)
INSERT INTO TR_PLN_MOIS_PMS VALUES (10, “octobre®)
INSERT INTO TR_PLN_MOIS_PMS VALUES (11, *novembre®)
INSERT INTO TR_PLN_MOIS_PMS VALUES (12, "décembre”)

/* insertion des données table TR_PLN_JOUR_SEMAINE_JSM */

INSERT INTO TR_PLN_JOUR_SEMAINE_PJS VALUES (1, "lundi*)
INSERT INTO TR_PLN_JOUR_SEMAINE_PJS VALUES (2, "mardi®)
INSERT INTO TR_PLN_JOUR_SEMAINE_PJS VALUES (3, “"mercredi®)
INSERT INTO TR_PLN_JOUR_SEMAINE_PJS VALUES (4, "jeudi)
INSERT INTO TR_PLN_JOUR_SEMAINE_PJS VALUES (5, "vendredi®)
INSERT INTO TR_PLN_JOUR_SEMAINE_PJS VALUES (6, "samedi®)
INSERT INTO TR_PLN_JOUR_SEMAINE_PJS VALUES (7, "dimanche")

/* insertion des données table TR_PLN_JOUR_MOIS_PJM */
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (1)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (2)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (3)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (4)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (5)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (6)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (7)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (8)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (9)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (10)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (11)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (12)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (13)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (14)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (15)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (16)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (17)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (18)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (19)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (20)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (21)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (22)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (23)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (24)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (25)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (26)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (27)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (28)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (29)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (30)

http://sglpro.developpez.com/cours/gestiontemps/ 14/04/2008

Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ... Page 20 of 26

INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (31)

/* insertion des données table TR_PLN_JOUR_FERIE_MOBILE_PFM */

INSERT INTO TR_PLN_JOUR_FERIE_MOBILE_PFM (PFM_ID, PFM_LIBELLE) VALUES (1, "Paques")
INSERT INTO TR_PLN_JOUR_FERIE_MOBILE_PFM (PFM_ID, PFM_LIBELLE) VALUES

(2, "Ascension®)

INSERT INTO TR_PLN_JOUR_FERIE_MOBILE_PFM (PFM_ID, PFM_LIBELLE) VALUES

(3, "Pentecote”)

/* insertion des données table TR_PLN_JOUR_FERIE_FIXE_PJF */

INSERT INTO TR_PLN_JOUR_FERIE_FIXE_PJF VALUES (1, 1, “jour de I""an")

INSERT INTO TR_PLN_JOUR_FERIE_FIXE_PJF VALUES (5, 1, “féte du travail®)

INSERT INTO TR_PLN_JOUR_FERIE_FIXE_PJF VALUES (5, 8, ‘“armistice 1945%)

INSERT INTO TR_PLN_JOUR_FERIE_FIXE_PJF VALUES (7, 14, "féte nationale®)

INSERT INTO TR_PLN_JOUR_FERIE_FIXE_PJF VALUES (8, 15, "Assomption®)

INSERT INTO TR_PLN_JOUR_FERIE_FIXE_PJF VALUES (11, 1, “Toussaint (féte des morts)")
INSERT INTO TR_PLN_JOUR_FERIE_FIXE_PJF VALUES (11, 11, "armistice de 1918%)

INSERT INTO TR_PLN_JOUR_FERIE_FIXE_PJF VALUES (12, 25, “Noél")

/* insertion des données table TR_PLN_TRIMESTRE_PTR */
INSERT INTO TR_PLN_TRIMESTRE_PTR VALUES (1, "Premier trimestre-®)
INSERT INTO TR_PLN_TRIMESTRE_PTR VALUES (2,"Second trimestre®)
INSERT INTO TR_PLN_TRIMESTRE_PTR VALUES (3, Troisiéme trimestre-®)
INSERT INTO TR_PLN_TRIMESTRE_PTR VALUES (4,"Quatriéme trimestre®)

/* insertion des données table TR_PLN_SEMESTRE_PST */
INSERT INTO TR_PLN_SEMESTRE_PST VALUES (1,"Premier semestre”)
INSERT INTO TR_PLN_SEMESTRE_PST VALUES (2, "Second semestre®)

/
SCRIPTS TRANSACT SQL DES PROCEDURES STOCKEES POUR ALIMENTATION DES DONNEES

CREATE PROCEDURE SP_PLN_CREATE_ONE_YEAR @AN INTEGER
AS

/
TITRE : PROCEDURE STOCKEE MS SQL Server "SP_PLN_CREATE_ONE_YEAR"
AUTEUR : Frédéric BROUARD - 2002-09-06
ARGUMENT : @AN INTEGER entier représentant l"année du calendrier dont les

dates sont a stocker
APPELEE : par la procédure stockée SP_PLN_CREATE_YEAR qui vérifie les
années a créer

-- NOTA les dates sont calculées pour une seule année en débordant
-- éventuellement de quelques jours pour stocker des semaines entiéres

DECLARE @JOUR DATETIME

DECLARE @JOUR_DE_LAN DATETIME
DECLARE @JOUR_DEBUT DATETIME
DECLARE @JOUR_FIN DATETIME

DECLARE @i integer

DECLARE @JOUR_FIN_SEMAINE DATETIME
DECLARE @leapYear bit

DECLARE @ALEA INTEGER

SET NOCOUNT ON

-- indique de commencer la numérotation des jours de semaine a lundi
SET DATEFIRST 1

-- foamt 1SO des dates
SET DATEFORMAT YMD

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
BEGIN TRANSACTION TRAN_INS_DATES

-- création des dates

SET @JOUR_DE_LAN = CAST(CAST(@AN AS VARCHAR(4)) + "-01-01" AS DATETIME)

SET @JOUR_DEBUT = DATEADD(DAY, -6, @JOUR_DE_LAN) -- soit le 26 décembre an - 1
SET @JOUR_FIN = CAST(CAST(@AN + 1 AS VARCHAR(4)) + "-01-01" AS DATETIME)

SET @JOUR_FIN = DATEADD(DAY, 5, @JOUR_FIN) Z- soit le 6 janvier an + 1

SET @JOUR = @JOUR_DEBUT

-- vérification de présence des années pour débordement des dates
-- I1"année avant @AN existe t-elle ?
SET @i = DATEPART(YEAR, @JOUR_DEBUT)
IF NOT EXISTS(SELECT *
FROM TR_PLN_ANNEE_PAN
WHERE PAN_ID = Qi)

BEGIN
IF @i %4=0
SET @leapYear = 1
ELSE

SET @leapYear = 0
INSERT INTO TR_PLN_ANNEE_PAN
VALUES (@i, @leapYear)
IF @@ERROR <> O BEGIN GOTO LBL_ERROR RETURN END
END
-- I"année aprés @AN existe t-elle ?
SET @i = DATEPART(YEAR, @JOUR_FIN)
IF NOT EXISTS(SELECT *
FROM TR_PLN_ANNEE_PAN
WHERE PAN_ID = @i)
BEGIN
IF @i %4=0
SET @leapYear = 1
ELSE
SET @leapYear = 0
INSERT INTO TR_PLN_ANNEE_PAN
VALUES (@i, @leapYear)
IF @@ERROR <> O BEGIN GOTO LBL_ERROR RETURN END
END

-- création de I"année @AN
IF NOT EXISTS(SELECT *
FROM TR_PLN_ANNEE_PAN
WHERE PAN_ID = @AN)
BEGIN
IF @AN % 4 = O
SET @leapYear = 1
ELSE
SET @leapYear = 0
INSERT INTO TR_PLN_ANNEE_PAN
VALUES (@AN, @leapYear)

http://sglpro.developpez.com/cours/gestiontemps/

14/04/2008

Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ... Page 21 of 26

IF @@ERROR <> O BEGIN GOTO LBL_ERROR RETURN END
END

WHILE @JOUR < @JOUR_FIN
BEGIN
SET @ALEA = RAND() * 100000
IF NOT EXISTS (SELECT *
FROM T_PLN_JOUR_PJR
WHERE PJR_DATE = @JOUR)
BEGIN
INSERT INTO T_PLN_JOUR_PJR (PJR_DATE, PAN_ID, PMS_ID, PIM_ID, PJS_ID, PJA_ID,
PJR_RANG_JOUR, PJR_ALEA)
VALUES (@JOUR,
DATEPART(YEAR, @JOUR),
DATEPART(MONTH, @JOUR),
DATEPART(DAY, @JOUR),
DATEPART (WEEKDAY, @JOUR),
DATEPART(DAYOFYEAR, @JOUR),
CAST(@JOUR AS INTEGER),
@ALEA)
IF @EERROR <> O BEGIN GOTO LBL_ERROR RETURN END
ND

SET @JOUR = DATEADD(DAY, 1, @JOUR)
END

/* Update des trimestres et semestres */

UPDATE T_PLN_JOUR_PJR

SET PTR_ID = 1, PST_ID = 1

WHERE ~DATEPART(MONTH, PJR_DATE) BETWEEN 1 AND 3
AND PAN_ID = @AN AND PTR_ID 1S NULL

IF @ERROR <> 0 BEGIN GOTO LBL_ERROR RETURN END

UPDATE T_PLN_JOUR_PJR

SET PTR_ID = 2, PST_ID = 1

WHERE ~DATEPART(MONTH, PJR_DATE) BETWEEN 4 AND 6
AND PAN_ID = @AN AND PTR_ID 1S NULL

IF @GERROR <> 0 BEGIN GOTO LBL_ERROR RETURN END

UPDATE T_PLN_JOUR_PJR

SET PTR_ID = 3, PST_ID = 2

WHERE ~DATEPART(MONTH, PJR_DATE) BETWEEN 7 AND 9
AND PAN_ID = @AN AND PTR_ID IS NULL

IF @OERROR <> O BEGIN GOTO LBL_ERROR RETURN END

UPDATE T_PLN_JOUR_PJR

SET PTR_ID = 4, PST_ID = 2

WHERE ~DATEPART(MONTH, PJR_DATE) BETWEEN 10 AND 12
AND PAN_ID = @AN AND PTR_ID IS NULL

IF @OERROR <> O BEGIN GOTO LBL_ERROR RETURN END

-- création des semaines de lI"année
-- calage premier jour de semaine
SET @JOUR = @JOUR_DE_LAN
IF DATEPART(WEEKDAY, @JOUR) > 4
BEGIN
WHILE DATEPART(WEEKDAY, @JOUR) <> 1
SET @JOUR = DATEADD(DAY, +1, @JOUR)
END
ELSE
BEGIN
WHILE DATEPART(WEEKDAY, @JOUR) <> 1
SET @JOUR = DATEADD(DAY, -1, @JOUR)

END

SET @i = 1

WHILE DATEADD(DAY, 7, @JOUR) < @JOUR_FIN
BEGIN

UPDATE T_PLN_JOUR_PJR
SET PSM_ID = @i
WHERE PJR_DATE BETWEEN @JOUR AND DATEADD(DAY, 6, @JOUR)
IF @@ERROR <> O BEGIN GOTO LBL_ERROR RETURN END
SET @JOUR = DATEADD(DAY, 7, @JOUR)
SET @i = @i + 1

END

SET NOCOUNT OFF
COMMIT TRANSACTION TRAN_INS_DATES

RETURN

LBL_ERROR:

ROLLBACK TRANSACTION TRAN_INS_DATES

GO

/ .
TITRE : PROCEDURE STOCKEE MS SQL Server 'SP_PLN_CREATE_YEAR™
AUTEUR : Frédéric BROUARD - 2002-09-06

ARGUMENT : @AN INTEGER entier dans les limtes 1900 / 200 représentant
I"année du calendrier dont les dates sont a stocker

APPELS : la procédure stockée SP_PLN_CREATE_ONE_YEAR qui créé une année
de date

CREATE PROCEDURE SP_PLN_CREATE_YEAR @AN INTEGER
AS

-- alimente les tables :

- TR_PLN_JOUR_ANNEE_PJA
- TR_PLN_ANNEE_PAN

- TR_PLN_JOUR_PJR

- TR_PLN_SEMAINE_PSM

-- vérifaction des limites d"utilisation
ite de calcul : année comprise entre 1601 et 2399

IF @AN < 1901 OR @AN > 2099
BEGIN
DECLARE @TXT_ERROR VARCHAR(300)
SET @TXT_ERROR = "1l n""est pas possible de calculer le calendrier pour des
années hors de la plage 1900 / 2100."
+" En I""occurence vous avez tené de calculer les dates de I""année
%d .

http://sglpro.developpez.com/cours/gestiontemps/

14/04/2008

Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ... Page 22 of 26

RAISERROR (@TXT_ERROR, 16, 1, @AN)
RETURN
END

--DECLARE @JOUR_DE_LAN DATETIME
DECLARE @MIN_AN INTEGER

DECLARE @MAX_AN INTEGER

DECLARE @i integer

--DECLARE @JOUR_FIN_SEMAINE DATETIME
--DECLARE @leapYear bit

SET NOCOUNT ON
SET DATEFORMAT YMD

--SET @JOUR_DE_LAN = CAST(CAST(@AN AS VARCHAR(4)) + "-01-01° AS DATETIME)

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
BEGIN TRANSACTION

-- création des jours de l"année de 1 a 366 si cela n"est pas déja fait.
IF NOT EXISTS(SELECT 1

FROM TR_PLN_JOUR_ANNEE_PJA

HAVING COUNT(*) = 366)

BEGIN
SET @i = 1
WHILE @i <= 366
BEGIN

INSERT INTO TR_PLN_JOUR_ANNEE_PJA
VALUES (@i)
IF @@ERROR <> 0O BEGIN ROLLBACK RETURN END
SET @i = @i + 1
END
END

-- création des numéro de semaine de 1 a 53 si cela n"est pas déja fait.
IF NOT EXISTS(SELECT 1

FROM TR_PLN_SEMAINE_PSM

HAVING COUNT(*) = 53)

BEGIN
SET @i =1
WHILE @i <= 53
BEGIN

INSERT INTO TR_PLN_SEMAINE_PSM
VALUES (@i)
IF @@ERROR <> O BEGIN ROLLBACK RETURN END
SET @i = @i + 1
END
END

COMMIT TRANSACTION

-- I"année a créer a t-elle déja été créée ?
IF EXISTS (SELECT 1
FROM T_PLN_JOUR_PJR
GROUP BY PJR_DATE
HAVING COUNT(*) >= 365)
-- oui, alors retour
RETURN

-- non, alors on regarde si d"autres années ont été créées
SELECT @MIN_AN = MIN(PAN_ID), @MAX_AN = MAX(PAN_ID)

FROM T_PLN_JOUR_PJR

GROUP BY PAN_ID

HAVING COUNT(*) >= 365

-- le calendrier est vide : une seule année est a créer
IF @MIN_AN IS NULL AND @MAX_AN IS NULL
BEGIN
EXEC SP_PLN_CREATE_ONE_YEAR @AN
RETURN
END

-- le calendrier est déja rempli et I année a créer si situe
-- avant les années déja créées
IF @AN < @MIN_AN
BEGIN
WHILE @AN < @MIN_AN
BEGIN
EXEC SP_PLN_CREATE_ONE_YEAR QAN
SET @AN = @AN + 1
END
RETURN
END

-- le calendrier est déja rempli et I"année a créer si situe
-- apres les années déja créées
IF @AN > @VMAX_AN
BEGIN
WHILE @AN > @MIN_AN
BEGIN
EXEC SP_PLN_CREATE_ONE_YEAR QAN
SET @AN = @AN - 1
END
RETURN
END

GO

Exemple d"appel du script :

SP_PLN_CREATE_YEAR 2000 => création des dates de I"année 2000 du 26/12/1999 au
6/1/2001

SP_PLN_CREATE_YEAR 2010 => création des dates de toutes les années entre 2001 et
2010

REQUETE DE MISE A JOUR DES RANGS

-- maj du rang des années
UPDATE T_PLN_JOUR_PJR
SET PJR_RANG_AN =
CAST(
(CAST(PAN_ID AS FLOAT) - 1899.0)
+ (CAST(PJR_RANG_JOUR AS FLOAT)

http://sglpro.developpez.com/cours/gestiontemps/

14/04/2008

Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ... Page 23 of 26

- (SELECT CAST(PJR2.PJR_RANG_JOUR AS FLOAT)
FROM T_PLN_JOUR_PJR PJR2
WHERE PJR2.PJIV_ID = 1
AND PJR2.PMS_ID = 1
AND PJR2.PAN_ID = PJR.PAN_ID +1))
/ (SELECT CAST(COUNT(*) AS FLOAT)
FROM T_PLN_JOUR_PJR PJR3
WHERE PJR3.PAN_ID = PJR.PAN_ID)
AS DECIMAL(10,4))
FROM T_PLN_JOUR_PJR PJR

-- maj du rang des mois
UPDATE T_PLN_JOUR_PJR
SET PJR_RANG_MOIS =
CAST(
(CAST(PAN_ID AS FLOAT) - 1900.0) * 12 + PMS_ID + 1
+ (CAST(PJR_RANG_JOUR AS FLOAT)
- (SELECT CAST(PJR2.PJR_RANG_JOUR AS FLOAT)
FROM T_PLN_JOUR_PJR PJR2
WHERE PJR2.PJM_ID = 1
AND PJR2.PMS_ID = (PJR.PMS_ID % 12) + 1
AND PJR2.PAN_ID =
CASE
WHEN PJR.PMS_ID + 1 = 13
THEN PJR.PAN_ID +1
ELSE PJR.PAN_ID
END))
/ (SELECT CAST(COUNT(*) AS FLOAT)
FROM T_PLN_JOUR_PJR PJR3
WHERE PJR3.PMS_ID = PJR.PMS_ID
AND PJR3.PAN_ID = PJR.PAN_ID)
AS DECIMAL(10,4))
FROM T_PLN_JOUR_PJR PJR

-- maj du rang des semaines
UPDATE T_PLN_JOUR_PJR
SET PJR_RANG_SEMAINE =
CAST(
CAST(PSM_ID AS FLOAT) + 51
+ (SELECT SUM(MAX_PSM_ID)
FROM (SELECT MAX(PSM_ID) AS MAX_PSM_ID
FROM T_PLN_JOUR_PJR
WHERE PAN_ID < PJR.PAN_ID
GROUP BY PAN_ID)
T)
+ (CAST(PJS_ID AS FLOAT) - 1) / 7))
AS DECIMAL(10,4))
FROM T_PLN_JOUR_PJR PJR

-- maj du rang des trimestres
UPDATE T_PLN_JOUR_PJR
SET PJR_RANG_TRIMESTRE =
CAST((CAST(PAN_ID AS FLOAT) - 1900) * 4 + PTR_ID
-- + nombre de jours écoulé
+ (CAST((SELECT COUNT(*)
FROM T_PLN_JOUR_PJR PJR2
WHERE PJR2.PTR_ID = PJR.PTR_ID
AND PJR2.PAN_ID = PJR.PAN_ID
AND PJR2.PJR_DATE <= PJR.PJR_DATE) AS FLOAT) - 1)
ivisé par le total de jours
/ (CAST((SELECT COUNT(*)
FROM T_PLN_JOUR_PJR PJR3
WHERE PJR3.PTR_ID = PJR.PTR_ID
AND PJR3.PAN_ID = PJR.PAN_ID) AS FLOAT))
AS DECIMAL(10,4))
FROM T_PLN_JOUR_PJR PJR

-- maj du rang des semestres
UPDATE T_PLN_JOUR_PJR
SET PJR_RANG_SEMESTRE =
CAST((CAST(PAN_ID AS FLOAT) - 1900) * 2 + PST_ID
-- + nombre de jours écoulé
+ (CAST((SELECT COUNT(*)
FROM T_PLN_JOUR_PJR PJR2
WHERE PJR2.PST_ID = PJR.PST_ID
AND PJR2.PAN_ID = PJR.PAN_ID
AND PJR2.PJR_DATE <= PJR.PJR_DATE) AS FLOAT) - 1)

-- divisé par le total de jours
/ (CAST((SELECT COUNT(*)
FROM T_PLN_JOUR_PJR PJR3
WHERE PJR3.PST_ID = PJR.PST_ID
AND PJR3.PAN_ID = PJR.PAN_ID) AS FLOAT))
AS DECIMAL(10,4))
FROM T_PLN_JOUR_PJR PJR

A titre indicatif voici les nombre de semaines dans les années allant de 1900 a 2030
ainsi que le cumul du nombre de semaines depuis le ler janvier 1900

ANNEE JOUR_DE_LAN JOUR_SEMAINE NOMBRE_SEMAINE CUMUL_SEMAINE

1900 1900-01-01 lundi 52 52
1901 1901-01-01 mardi 52 104
1902 1902-01-01 mercredi 52 156
1903 1903-01-01 jeudi 53 209
1904 1904-01-01 vendredi 53 262
1905 1905-01-01 dimanche 52 314
1906 1906-01-01 lundi 52 366
1907 1907-01-01 mardi 52 418
1908 1908-01-01 mercredi 53 471
1909 1909-01-01 vendredi 53 524
1910 1910-01-01 samedi 52 576
1911 1911-01-01 dimanche 52 628
1912 1912-01-01 lundi 52 680
1913 1913-01-01 mercredi 52 732
1914 1914-01-01 jeudi 53 785
1915 1915-01-01 vendredi 53 838
1916 1916-01-01 samedi 52 890
1917 1917-01-01 lundi 52 942
1918 1918-01-01 mardi 52 994
1919 1919-01-01 mercredi 52 1046
1920 1920-01-01 jeudi 53 1099
1921 1921-01-01 samedi 53 1152
1922 1922-01-01 dimanche 52 1204
1923 1923-01-01 lundi 52 1256
1924 1924-01-01 mardi 52 1308

http://sglpro.developpez.com/cours/gestiontemps/

14/04/2008

Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ... Page 24 of 26

1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030

En prime, voici comment calculer les dates fériées mobiles des fétes chrétiennes, le
programme est une procédure écrite pour Transact SQL :

1925-01-01
1926-01-01
1927-01-01
1928-01-01
1929-01-01
1930-01-01
1931-01-01
1932-01-01
1933-01-01
1934-01-01
1935-01-01
1936-01-01
1937-01-01
1938-01-01
1939-01-01
1940-01-01
1941-01-01
1942-01-01
1943-01-01
1944-01-01
1945-01-01
1946-01-01
1947-01-01
1948-01-01
1949-01-01
1950-01-01
1951-01-01
1952-01-01
1953-01-01
1954-01-01
1955-01-01
1956-01-01
1957-01-01
1958-01-01
1959-01-01
1960-01-01
1961-01-01
1962-01-01
1963-01-01
1964-01-01
1965-01-01
1966-01-01
1967-01-01
1968-01-01
1969-01-01
1970-01-01
1971-01-01
1972-01-01
1973-01-01
1974-01-01
1975-01-01
1976-01-01
1977-01-01
1978-01-01
1979-01-01
1980-01-01
1981-01-01
1982-01-01
1983-01-01
1984-01-01
1985-01-01
1986-01-01
1987-01-01
1988-01-01
1989-01-01
1990-01-01
1991-01-01
1992-01-01
1993-01-01
1994-01-01
1995-01-01
1996-01-01
1997-01-01
1998-01-01
1999-01-01
2000-01-01
2001-01-01
2002-01-01
2003-01-01
2004-01-01
2005-01-01
2006-01-01
2007-01-01
2008-01-01
2009-01-01
2010-01-01
2011-01-01
2012-01-01
2013-01-01
2014-01-01
2015-01-01
2016-01-01
2017-01-01
2018-01-01
2019-01-01
2020-01-01
2021-01-01
2022-01-01
2023-01-01
2024-01-01
2025-01-01
2026-01-01
2027-01-01
2028-01-01
2029-01-01
2030-01-01

Jeudi
vendredi
samedi
dimanche
mardi
mercredi
Jeudi
vendredi
dimanche
lundi
mardi
mercredi
vendredi
samedi
dimanche
lundi
mercredi
jeudi
vendredi
samedi
lundi
mardi
mercredi
jeudi
samedi
dimanche
lundi
mardi
jeudi
vendredi
samedi
dimanche
mardi
mercredi
Jeudi
vendredi
dimanche
lundi
mardi
mercredi
vendredi
samedi
dimanche
lundi
mercredi
Jeudi
vendredi
samedi
lundi
mardi
mercredi
Jeudi
samedi
dimanche
lundi
mardi
Jeudi
vendredi
samedi
dimanche
mardi
mercredi
Jeudi
vendredi
dimanche
lundi
mardi
mercredi
vendredi
samedi
dimanche
lundi
mercredi
jeudi
vendredi
samedi
lundi
mardi
mercredi
Jeudi
samedi
dimanche
lundi
mardi
Jeudi
vendredi
samedi
dimanche
mardi
mercredi
Jeudi
vendredi
dimanche
lundi
mardi
mercredi
vendredi
samedi
dimanche
lundi
mercredi
Jeudi
vendredi
samedi
lundi
mardi

1361
1414
1466
1518
1570
1622
1675
1728
1780
1832
1884
1937
1990
2042
2094
2146
2198
2251
2304
2356
2408
2460
2512
2565
2618
2670
2722
2774
2827
2880
2932
2984
3036
3088
3141
3194
3246
3298
3350
3403
3456
3508
3560
3612
3664
3717
3770
3822
3874
3926
3978
4031
4084
4136
4188
4240
4293
4346
4398
4450
4502
4554
4607
4660
4712
4764
4816
4869
4922
4974
5026
5078
5130
5183
5236
5288
5340
5392
5444
5497
5550
5602
5654
5706
5759
5812
5864
5916
5968
6020
6073
6126
6178
6230
6282
6335
6388
6440
6492
6544
6596
6649
6702
6754
6806
6858

calcul des dates fériées chrétiennes dans le calendrier grégorien

Algorithme congu par Claus Tgndering .

http://sglpro.developpez.com/cours/gestiontemps/

14/04/2008

Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ... Page 25 of 26

Version 2.0 - 11 Nov 1998

Copyright and disclaimer

This document is Copyright (C) 1998 by Claus Tondering.
E-mail: claus@tondering.dk.

The document may be freely distributed, provided this
copyright notice is included and no money is charged for
the document.

This document is provided "as is". No warranties are made as
to its correctness.

This algorithm is based in part on the algorithm of Oudin (1940) as
quoted in "Explanatory Supplement to the Astronomical Almanac",
P. Kenneth Seidelmann, editor.

People who want to dig into the workings of this algorithm, may be
interested to know that

is the Golden Number-1

is 23-Epact (modulo 30)

is the number of days from 21 March to the Paschal full moon
is the weekday for the Paschal full moon (0=Sunday, 1=Monday,
etc.)

is the number of days from 21 March to the Sunday on or before
the Paschal full moon (a number between -6 and 28

[)

-

Le lundi de Paques est déterminé par :
Dimanche de Paques + 1 jour

Le Jeudi de l"ascension est déterminé par :
Dimanche de Paques + 39 jours

Le Lundi de pentecdte est déterminé par :
Dimanche de Paques + 50 jours

CREATE PROCEDURE SP_PLN_ADD_JOUR_FERIE_MOBILE_CHRETIEN @AN INT
AS

SET DATEFORMAT YMD

DECLARE @G INT

DECLARE @1 INT

DECLARE @J INT

DECLARE @C INT

DECLARE @H INT

DECLARE @L INT

DECLARE @JourPaque INT
DECLARE @MoisPaque INT

DECLARE @DimPaque DATETIME
DECLARE @LunPaque DATETIME
DECLARE @JeuAscension DATETIME
DECLARE @LunPentecote DATETIME

SET @G = @AN % 19
SET @C = @AN / 100

SET @H = (@C - @C / 4 - (8 * @C + 13) / 25 + 19 * @G + 15) % 30

SET @1 = @H - (GH / 28) * (1 - (@H /7 28) * (29 / (@H + 1)) * ((21 - @) / 11))
SET @ = (GAN + GAN 7 4 + @1 + 2 - @C + @C / 4) % 7

SET @L = @1 - @J
SET @MoisPaque = 3 + (@L + 40) / 44
SET @JourPaque = @L + 28 - 31 * (@MoisPaque / 4)

SET DATEFORMAT YMD

SET @DimPaque = CAST(CAST(@AN AS VARCHAR(4)) + "-*
+ CAST(@MoisPaque AS VARCHAR(2)) + "-*
+ CAST(@JourPaque AS VARCHAR(2)) AS DATETIME)
SET @LunPaque = DATEADD(DAY, 1, @DimPaque)
SET @JeuAscension = DATEADD(DAY, 39, @DimPaque)
SET @LunPentecote = DATEADD(DAY, 50, @DimPaque)

SELECT "Dimanche” AS JOUR, "Paques”™ AS FETE, @DimPaque AS DATE_FETE
ggll_ggT "Lundi® AS JOUR, T"Paques”™ AS FETE, @LunPaque AS DATE_FETE
ggll_ggT "Jeudi® AS JOUR, "Ascension” AS FETE, @JeuAscension AS DATE_FETE
ggll_ggT "Lundi® AS JOUR, "Pentecdte AS FETE, @LunPentecote AS DATE_FETE

GO

7. Pour en savoir plus sur le sujet

LIVRES :

Developping Time-Oriented Database Applications in SQL - Ricahrds T. Snodgrass -
Morgan Kauffmann - 2000

Temporal Data and the Relational Model - C. J. Date, Hugh Darwen, Nikos A. Lorentzos -
Morgan Kauffmann - 2000

WEB :

http://membres.lycos.fr/urbainmartin/temps.et.calendriers/
http://pchapelin.free.fr/calrep/index.htm
http://perso.easynet.fr/~cerf/calendar/calendar.htm http://www.bdl.fr/minitel/
http://www.geocities.com/Paris/Louvre/9647/histoire.htm
http://Ilwh.free.fr/pages/algo/calendriers/calendriers.htm
http://www.altcal.com/propcal.html http://www.cite-
sciences.fr/francais/ala_cite/act_educ/education/createurs/temps/tintrod.htm
http://perso.wanadoo.fr/b.villemin/bissexti.html

Livres

SQL - développement

SQL - le cours de référence sur le langage SQL
Avant d'aborder le SQL

http://sglpro.developpez.com/cours/gestiontemps/ 14/04/2008

Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ...

Définitions

SGBDR fichier ou client/serveur ?

La base de données exemple (gestion d'un hotel)
Modélisation MERISE

Mots réservés du SQL

LeSQLde AaZz

Les fondements

Le simple (?) SELECT

Les jointures, ou comment interroger plusieurs tables
Groupages, ensembles et sous-ensembles
Les sous-requétes

Insérer, modifier, supprimer

Création des bases

Gérer les privileges ("droits™)

Toutes les fonctions de SQL

Les techniques des SGBDR

Les erreur les plus fréquentes en SQL

Les petits papiers de SQLPro

Conférence Borland 2003

L'héritage des données

Données et normes

Modélisation par méta données

Optimisez votre SGBDR et vos requétes SQL
Le temps, sa mesure, ses calculs

QBE, le langage de ZLOOF

Des images dans ma base

La jointure manquante

Clefs auto incrémentées

L'indexation textuelle

L'art des "Soundex"

Une seule colonne, plusieurs données

La division relationnelle, mythe ou réalité ?
Gestion d'arborescence en SQL

L'avenir de SQL

Méthodes et standards

Les doublons

SQL Server

Eviter les curseurs

Un apercu de TRANSACT SQL V 2000

SQL Server 2000 et les collations
Sécurisation des accés aux bases de données SQL Server
Des UDF pour SQL Server

SQL Server et le fichier de log...

Paradox

De vieux articles publiés entre 1995 et 1999 dans la défunte revue Point DBF

A cette date arbitraire, on trouve :
- discours de Pompidou a Aurillac
- naissance de Gérald Gardrinier dit De Palmas,
chanteur
- naissance d'Alain Roche footballeur
@ - publication au JO du décret n° 67-896 du 6
octobre 1967
- fondation du judo club de Nangis
- déces de Marcel Aymé
- création de la Ligue du Limousin de Voile
- grand prix moto du Japon vainqueur Mike
HAILWOOD sur 350 cc (HONDA)

Copyright © 2004 Frédéric Brouard. Aucune reproduction, méme partielle, ne peut étre faite de ce site et de
I'ensemble de son contenu : textes, documents, images, etc sans I'autorisation expresse de I'auteur. Sinon vous
encourez selon la loi jusqu'a 3 ans de prison et jusqu'a 300 000 E de dommages et intéréts. Cette page est
déposée a la SACD.

http://sglpro.developpez.com/cours/gestiontemps/

Page 26 of 26

14/04/2008

