

Calendrier, timing et horaires en SQL...

Date de publication : 18/04/2004

Par SQLPro

niveau : intermédiaire

La gestion du temps et la manipulation des données temporelles sont les éléments les
plus ardus des développements.
Pour mettre toutes les chances de votre côté et passer d'un problème complexe à une
solution presque enfantine, je vous propose d'étudier cette méthode basée sur la
modélisation d'un planning de dates...

Préambule
1. La solution normative
1.1. Les types temporels SQL 2
1.2. Mathématique normative des calculs temporels
1.2.1. Fonctions
1.2.2. Le prédicat OVERLAPS
1.2.3. Algèbre temporelle
1.2.4. Logique temporelle
2. Le discours des éditeurs
3. La solution intelligente
3.1. Le modèle de données
3.2. Les données du référentiel
3.3. Les mesures temporelles
3.3.1. Le nombre de ... jour, mois, annéé, trimestre, semestre
3.3.2. Comment ajouter exactement un deux ou trois mois, et pouvoir retomber sur nos
date en les y retranchant ?
3.3.3. Toutes les ... date, mois, années ... entre deux dates
4. Dates partielles
4.1. Dates composites
4.2. Fourchette de date
4.3. Affinage
5. Conclusion
6. ANNEXE - les scripts de création du modèle de planning...
7. Pour en savoir plus sur le sujet

Préambule

La difficulté des calculs portant sur des dates ou des horaires (et parfois les deux) est lié
à la codification même de la mesure du temps ainsi qu'au fait que le temps est une
entropie (disons le, même une "isentroprie"), c'est à dire qu'il s'écoule de manière
uniforme (iso) et dans un seul sens irréversible (vers le futur).

La mesure du temps n'obéit pas à des règles conventionnelles, comme le comptage
décimal ou l'origine zéro. En effet :

Les années comptent tantôt 365 tantôt 366 jours en fait 365 jours 5 heures 48
min. 45,97 sec...
Les mois de 29 à 31 jours
Il n'y a pas d'année 0, mais il y a des années négatives (avant JC !)
Les siècles et millénaires commencent par une année unitaire (1, 1901, 2001...)
Les jours comptent 24 heures et il y a une heure zéro !
Les heures comptent 60 minutes et les minutes 60 secondes,
Il n'y a pas recouvrement éxact des semaines par rapport aux mois...
Les heures changent par rapport aux différents fuseaux horaires de la planète !
certaines opérations sur les dates sont impossible (par exemples rajouter
exactement 3 mois à une date)...
le 10 octobre 1582 n'a jamais existé !!!

Tous ces éléments font que les calculs, notamment de comptage du temps obéissent à
des algorithmes complexes.

De ce fait, la norme SQL 2, propose une solution générale assez intelligente. Mais elle est
rarement implantée. Nous étudierons donc la norme, ce que propose les éditeurs et
finalement une solution basée sur des relations entre tables avec une table principale
stockant toutes les dates.

NOTA : il est dommage que le calendrier mis en place lors de la révolution française n'ai
pas subsisté. L'année y étais divisé en 12 mois de 30 jours. Chaque semaine faisait 10
jours. Les 5 ou 6 jours restant étaient placés à la fin de l'année et constituait des
vancances... En quelques sortes, les révolutionnaires étaient en avance sur les congés
payés de 1936 et sur les 35 heures de la mère Aubry !

ATTENTION : La numérotation des semaines est standardisée depuis 1976 par l'ISO,
avec les règles suivantes :

Le lundi est considéré comme le premier jour de la semaine.
Les semaines d'une même année sont numérotées de 01 à 52 (parfois 53).
La semaine qui porte le numéro 01 est celle qui contient le premier jeudi de

Page 1 of 26Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des dé...

14/04/2008http://sqlpro.developpez.com/cours/gestiontemps/

janvier.
Il peut exister une semaine n°53 (années communes finissant un jeudi, bissextiles
finissant un jeudi ou un vendredi).

La numérotation des semaines aux USA, comme la numérotation des jours diffère
totalement de cette norme !

1. La solution normative

Elle se compose de trois éléments : des types spécifiques, une algèbre et des opérateurs
particuliers.

1.1. Les types temporels SQL 2

La norme propose les types :

La précision de TIME ZONE permet de définir le décalage du fuseau horaire par rapport à
l'heure universelle (UTC).

La norme SQL 2 impose en outre la représentation des dates et heures suivant le
masque :

Avec des dates allant du premier janvier de l'an 1 au 31 décembre de l'an 9999.

NOTA : le typage rapide est permis et même conseillé dans les expression temporelles.
En effet comment savoir si 21:16 fait référence à 21h16 ou 21 minutes et 16 secondes ?
Pour lever le doute, on peut, plutôt que d'utiliser la fonction CAST, préfixer la donnée :

Exemple :

Le type INTERVAL permet de stocker des durées. Sa syntaxe est de la forme :

dans laquelle mesure_temp peut être :

avec les contraintes suivante :

mesure_temps1 doit englober mesure_temp2
mesure_temps2 et toutes les mesures intermédiaires entre mesure_temps1 et
mesure_temps2 ne peuvent "déborder".

Exemples :

1.2. Mathématique normative des calculs temporels

1.2.1. Fonctions

Les fonctions CURRENT_DATE, CURRENT_TIME,CURRENT_TIMESTAMP permettent
de récupérer respectivement la date, l'heure et le combiné date/heure courantes depuis
le système. Attention, ce sont des fonctions non déterministes, c'est à dire que ré
exécutées plusieurs fois de suite, elles peuvent ne pas donner un résultat identique...

La fonction EXTRACT permet d'extraire une partie temporelle sous forme numérique
d'une donnée de type temporel.
La syntaxe de le fonction EXTRACT est la suivante :

Exemples :

DATE
TIME [WITH TIME ZONE]
TIMESTAMP [WITH TIME ZONE]
INTERVAL

HEURE DATE DATE et HEURE

hh:mm:ss.nnn AAAA-MM-JJ
AAAA-MM-JJ
hh:mm:ss.nnn

TIME '00:21:16', DATE '2002-04-05'

nom_colonne INTERVAL mesure_temps1 [TO mesure_temps2]

YEAR | MONTH | DAY | HOUR | MINUTE | SECOND

VALIDE NON VALIDE

DUREE1 INTERVAL DAY DUREE2 INTERVAL DAY TO DAY

DUREE3 INTERVAL YEAR TO DAY DUREE4 INTERVAL MINUTE TO HOUR

DUREE5 INTERVAL HOUR TO MINUTE DUREE6 INTERVAL DAY TO MONTH

CAST ('300:5:20' AS
 INTERVAL HOUR TO SECOND)

CAST('10:300:20' AS
 INTERVAL HOUR TO SECOND)

CAST ('2002-09-04 21:16'
 INTERVAL YEAR TO MINUTE)

CAST ('4/9/2002 21h16'
 INTERVAL YEAR TO MINUTE)

EXTRACT({YEAR | MONTH | DAY | HOUR | MINUTE | SECOND } FROM donnée)

Page 2 of 26Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des dé...

14/04/2008http://sqlpro.developpez.com/cours/gestiontemps/

1.2.2. Le prédicat OVERLAPS

Un outil puissant nous est fournit pas SQL avec le prédicat OVERLAPS. Il permet de
préciser si une période en recouvre (au moins partiellement) une autre. C'est très
pratique si vous voulez gérer un diagramme de GANTT par exemple, ou il convient que
certaines tâches ne démarrent pas avant la fin d'autres tâches.

La syntaxe du prédicat OVERLAPS est la suivante :

Avec la contrainte suivante :

borne_début et borne_fin doivent être de même type dans les périodes sauf si
borne_fin est de type INTERVAL.

Exemples :

Maintenant penchons nous sur le résultat. OVERLAPS étant un prédicat il ne peut fournir
que... 3 valeurs : TRUE, FALSE et UNKNOWN (du fait de la présence possible de
marqueur NULL dans les données).

Le prédicat OVERLAPS est vrai si :

Ce qui peut se traduire en bon français par : la période P2 recouvre la période P1, si tout
ou partie de la période P2 est inclus dans la période P1.
ATTENTION : un effet de bord due à l'asymétrie du prédicat est à remarquer...

Un bon exemple valant mieux qu'un long discours, voici quelques données permettant de
mieux comprendre l'intérêt de ce prédicat. Le jeu d'essais suivant va nous permettre de
mieux comprendre...

Les périodes dont définies comme suit :

a1 va de 8h à 9h et a2 de 8h30 à 9h30
b1 va de 8h à 9h et b2 de 9h à 9h30
c1 va de 9h à 9h30 et c2 de 9h à 9h
d1 va de 9h à 9h30 et d2 de 9h30 à 9h30
e1 va de 8h à 8h30 et e2 de 9h à 9h30
f1 va de 8h30 à 9h et f2 de 8h à 8h30
g1 va de 8h30 à 10h et g2 de 8h à 9h

EXTRACT (MONTH FROM '2002-04-13') 4
EXTRACT (MINUTE FROM '2002-04-13 21:16:11.050') 16

(période1) OVERLAPS (période2)

période ::
borne_debut, borne_fin

borne_debut ::
DATE | TIME | TIMESTAMP

borne_fin ::
DATE | TIME | TIMESTAMP | INTERVAL

VALIDE NON VALIDE
(TIME '08:11:25', TIME '09:25:11')
OVERLAPS
(TIME '09:11:25', TIME '09:11:25')

TIME '08:11:25', DATE '2002-01-01')
OVERLAPS
(TIME '09:11:25', TIME '09:11:25')

(DATE '2000-01-01', INTERVAL '100' DAY)
OVERLAPS
(DATE '2000-04-01', INTERVAL '1' DAY)

(DATE '2000-01-01', INTERVAL '100' DAY)
OVERLAPS
(TIME '20:04:01', INTERVAL '1' DAY)

(TIMESTAMP '2002-01-01 08:11:25',
 TIMESTAMP '2002-02-01 21:25:11')
OVERLAPS
(TIMESTAMP '2002-01-10 09:11:25',
 INTERVAL '1 01:01:30' DAY TO SECOND)

(TIMESTAMP '2002-01-01 08:11:25',
 TIMESTAMP '2002-02-01 21:25:11')
OVERLAPS
(INTERVAL '1 01:01:30' DAY TO SECOND,
 TIMESTAMP '2002-01-10 09:11:25')

((période1.borne_debut > période2.borne_debut
 et (période1.borne_debut < période2.borne_debut ou période1.borne_fin <
période2.borne_fin)) ou
(période2.borne_debut > période1.borne_debut
 et (période2.borne_debut < période1.borne_fin ou période2.borne_fin <
période1.borne_fin)) ou
(période1.borne_debut = période2.borne_debut et (période1.borne_fin NON NUL et
période2.borne_fin NON NUL)

Page 3 of 26Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des dé...

14/04/2008http://sqlpro.developpez.com/cours/gestiontemps/

Détails des intervalles de temps c2 et d

On peut les modéliser ainsi :

La requête suivante, donne :

Seules, les périodes des exemples a, c et g répondent à l'opérateur OVERLAPS.

CREATE TABLE PERIODE
(CODE CHAR(1),
 P1_DEBUT TIME,
 P1_FIN TIME,
 P2_DEBUT TIME,
 P2_FIN TIME)

INSERT INTO PERIODE (CODE, P1_DEBUT, P1_FIN, P2_DEBUT, P2_FIN)
VALUES ('a', '08:00:00', '09:00:00', '08:30:00', '09:30:00')
INSERT INTO PERIODE (CODE, P1_DEBUT, P1_FIN, P2_DEBUT, P2_FIN)
VALUES ('b', '08:00:00', '09:00:00', '09:00:00', '09:30:00')
INSERT INTO PERIODE (CODE, P1_DEBUT, P1_FIN, P2_DEBUT, P2_FIN)
VALUES ('c', '09:00:00', '09:30:00', '09:00:00', '09:00:00')
INSERT INTO PERIODE (CODE, P1_DEBUT, P1_FIN, P2_DEBUT, P2_FIN)
VALUES ('d', '09:00:00', '09:30:00', '09:30:00', '09:30:00')
INSERT INTO PERIODE (CODE, P1_DEBUT, P1_FIN, P2_DEBUT, P2_FIN)
VALUES ('e', '08:00:00', '08:30:00', '09:00:00', '09:30:00')
INSERT INTO PERIODE (CODE, P1_DEBUT, P1_FIN, P2_DEBUT, P2_FIN)
VALUES ('f', '08:30:00', '09:00:00', '08:00:00', '08:30:00')
INSERT INTO PERIODE (CODE, P1_DEBUT, P1_FIN, P2_DEBUT, P2_FIN)
VALUES ('g', '08:30:00', '10:00:00', '08:00:00', '09:00:00')

SELECT *
FROM PERIODE
WHERE P1_DEBUT, P1_FIN OVERLAPS P2_DEBUT, P2_FIN

CODE P1_DEBUT P1_FIN P2_DEBUT P2_FIN
---- -------- -------- -------- ---------
 a 08:00:00 09:00:00 08:30:00 09:30:00
 c 09:00:00 09:30:00 09:00:00 09:00:00
 g 08:30:00 10:00:00 08:00:00 09:00:00

Page 4 of 26Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des dé...

14/04/2008http://sqlpro.developpez.com/cours/gestiontemps/

Les périodes recouvrantes sont sur fond blanc, celle non recouvrantes sur fond gris.

L'explication est extraite de mon ouvrage, "SQL", la référence, collection développement,
Campus Press Editeur Paris 2001.

"
Par analogie, avec les données que nous venons de voir, il s'agit de considérer des
spectateurs qui seraient entrés dans une salle de cinéma pendant la projection d'un film.
Le film se serait déroulé en période P1 et chaque spectateur aurait séjourné dans la salle
en période P2. Dès lors tout devient clair : le prédicat OVERLAPS permet de savoir qui a
vu le film, au moins en partie !
On constate au passage que quelqu'un qui ne reste qu'un temps infiniment court, c'est à
dire que la période est caractérisé par le fait que le début est égal à la fin, a vu le film, si
cet instant est inclus dans la limite [début, fin[de la période de référence. En effet s'il
arrive au début il est considéré comme ayant vu le film tandis que s'il arrive à la fin, il est
considéré comme n'ayant pas vu le film. Ceci est logique, mais va à l'encontre de
l'intuition... C'est logique parce que le temps s'écoule de manière uniforme dans un seul
sens ! On ne peut revenir en arrière et la mesure du temps ne peut qu'augmenter
puisqu'allant toujours dans le sens du vieillissement On peut dire que l'écoulement du
temps est de nature isentropique, c'est à dire à entropie constante. En fait si on se livre à
un calcul mathématique aux limites on peut toujours partir d'un intervalle donné que l'on
restreint petit à petit pour arriver à une durée nulle. Si cet instant de durée infime
démarre au début d'un autre instant il reste toujours inclus dedans, tandis que s'il
démarre à la fin, il ne sera jamais inclus dedans ! Là ou l'affaire se complique, c'est
quand une valeur au moins est nulle...
"

Bien entendu en l'absence d'un tel prédicat, vous pouvez le fabriquer de toutes pièces
par une construction SQL. En effet reformulé sous SQL, notre prédicat OVERLAPS est :

Et donne, bien évidemment le même résultat que précédemment.

1.2.3. Algèbre temporelle

Il est possible d'utiliser les opérations algébriques + - x et / avec quelques restrictions :

SELECT *
FROM PERIODE
WHERE (P1_DEBUT > P2_DEBUT AND (P1_DEBUT < P2_FIN OR P1_FIN < P2_FIN)) OR
 (P2_DEBUT > P1_DEBUT AND (P2_DEBUT < P1_FIN OR P2_FIN < P1_FIN)) OR
 (P1_DEBUT = P2_DEBUT AND (P1_FIN IS NOT NULL AND P2_FIN IS NOT NULL))

premier
opérande

opérateur
second

opérande
résultat

TIMESTAMP | DATE |
TIME

-
TIMESTAMP | DATE |
TIME

INTERVAL

TIMESTAMP | DATE |
TIME

+ INTERVAL
TIMESTAMP | DATE
| TIME

TIMESTAMP | DATE |
TIME

- INTERVAL
TIMESTAMP | DATE
| TIME

INTERVAL +
TIMESTAMP | DATE |
TIME

TIMESTAMP | DATE
| TIME

INTERVAL + INTERVAL INTERVAL

INTERVAL - INTERVAL INTERVAL

Page 5 of 26Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des dé...

14/04/2008http://sqlpro.developpez.com/cours/gestiontemps/

Exemples :

1.2.4. Logique temporelle

Bien entendu la comparaison entre des types temporels est possible, mais dans certaines
limites.
Voici les différentes combinaisons possibles :

On pourra noter que tout interval comprenant le mois autrement qu'en borne de fin ne
peut faire l'objet d'une comparaion. Ceci est du au fait que le nombre de jours d'un mois
différe d'un mois à l'autre ce qui rend impossible la comparaison d'intervalle basé sur des
durée de mois...

2. Le discours des éditeurs

La complexité de la logique temporelle et du calcul de date ont fait que peu d'éditeurs de
SGBDR ont implémenté la norme de manière drastique. Certains même se contentent de
ne fournir que le type TIMESTAMP.

Quels sont alors les trucs qu'ils utilisent pour donner satisfaction à leurs clients.

SQL Server de Microsoft, n'inclut que le type DATETIME (équivalent du normatif
TIMESTAMP) et propose en sus, les cinq fonctions suivantes : CURRENT_TIMESTAMP,
DATEPART, DATEADD, DATEDIFF et DATENAME (nous passerons sous silence les DAY,
MONTH, YEAR qui sont virtuellement inclus dans DATEPART).

Intéressons nous aux fonctions DATEADD et DATEDIFF. Leurs syntaxe est :

Exemple :

L'ajout d'un mois au 31 janvier 2002 ne provoque pas un saut à mars, car l'algorithme
reprend bien la fin du mois suivant, soit le 28 février. Bravo SQL Server.
En revanche la seconde requête est une abération... en effet l'ajout et le retrait imbriqué
d'un mois, donne une date décalée de 3 jours. C'est une catastrophe... Au secours SQL
Server !!!

Néanmoins la solution SQL Server permet des calculs de base sur les données
temporelles pour peu que l'on prenne quelques précautions.

3. La solution intelligente

Elle consiste tout simplement à modéliser un planning avec non seulement une continuité
des dates exploitées dans la base mais un ensemble de tables "satellites" ayant chacune
un découpage du temps. Autrement dit, autour de la table des dates, une table des mois,

INTERVAL * nombre INTERVAL

INTERVAL / nombre INTERVAL

nombre * INTERVAL INTERVAL

VALIDE NON VALIDE
DATE '2002-01-01'
-
DATE '2001-12-24'
:: INTERVAL '8' DAY

DATE '2002-01-01'
-
TIMESTAMP '2001-12-24 16:12:30'
:: ???

TIMESTAMP '2001-12-24 16:12:30'
-
INTERVAL '8' DAY
:: '2001-12-16 16:12:30'

DATE '2001-01-01'
-
DATE '2002-12-24'
:: ???

INTERVAL '7' DAY
/
2
:: INTERVAL '3 12:00:00' DAY TO SECOND

DATE '2001-01-01'
*
INTERVAL '2' DAY

DATE [NOT] < <= = >= > <> DATE

TIME [NOT] < <= = >= > <> TIME

TIMESTAMP [NOT] < <= = >= > <> TIMESTAMP

INTERVAL YEAR [NOT] < <= = >= > <> INTERVAL YEAR

INTERVAL MONTH [NOT] < <= = >= > <> INTERVAL MONTH

INTERVAL YEAR TO MONTH [NOT] < <= = >= > <> INTERVAL YEAR TO MONTH

INTERVAL DAY [NOT] < <= = >= > <> INTERVAL DAY

INTERVAL DAY TO HOUR [NOT] < <= = >= > <> INTERVAL DAY TO HOUR

INTERVAL DAY TO MINUTE [NOT] < <= = >= > <> INTERVAL DAY TO MINUTE

INTERVAL DAY TO SECOND [NOT] < <= = >= > <> INTERVAL DAY TO SECOND

CURRENT_TIMESTAMP
Date et heure
courante

DATEPART
Equivalent du
EXTRACT de la
norme

DATEADD
Ajout de durée dans
date

DATEDIFF
Retrait de durée
dans date

DATENAME
Nom d'une partie de
date

DATEADD | DATEDIFF (partie_de_date, nombre, date)

SELECT DATEADD(MONTH, 1, CAST('2002-01-31' AS DATETIME)) 2002-02-28
00:00:00.000

SELECT DATEADD(MONTH, -1,
 DATEADD(MONTH, 1, CAST('2002-01-31' AS DATETIME)))

2002-01-28
00:00:00.000

Page 6 of 26Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des dé...

14/04/2008http://sqlpro.developpez.com/cours/gestiontemps/

des jours de semaine (de 1 lundi à 7 dimanche), des jours du mois (de 1 à 28, 29, 30 ou
31) une table des années, des semestres, des trimestres, des semaines...

3.1. Le modèle de données

Voici un tel modèle MERISE :

On trouvera dans T_PLN_JOUR_PJR une entité composée d'une colonne clef représentant
les dates, une colonne rang numérotant les dates dans leur ordre chronologique à l'aide
d'une valeur discrète (entier), mais aussi les semaines, les mois les trimestres les
semestres et les années avec des valeurs continues (décimaux) et une colonne alea dont
je vous expliquerai un jour l'utilité !

J'y ai rajouté une petite entité "INTERVALLE_TRAVAIL" permettant de définir des plages
horaires d'ouverture de l'entreprise. Par exemple de 8h30 à 12h30 et de 14h à 18h du
lundi au jeudi et de 9h à 12h et de 14h à 16h le vendredi (cette entité étant liée avec les
jours de semaine).

Ce modèle aboutit à la représentation physique suivante :

Où l'on voit que la table T_PLN_JOUR_PJR est garnie de 8 clefs étrangères...

Le secret de ce modèle et de son utilité, ce sont les colonnes PJR_RANG_... de la table
des dates. Nous allons voir ce qu'on y met dedans, mais surtout, comment on s'en sert...

3.2. Les données du référentiel

Bien entendu, pour pouvoir fonctionner, un tel modèle doit être garni, c'est à dire que
toutes les tables doivent être populées. En annexe vous trouverez les ordres SQL pour
créer cette base et la peupler.

Ce script et les deux procédures stockées (les procédures ont été écrites pour SQL Server

Page 7 of 26Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des dé...

14/04/2008http://sqlpro.developpez.com/cours/gestiontemps/

mais sont facilement transposable dans le langage procédurale de votre SGBDR ou dans
un langage comme DELPHI) permettent de peupler les tables référentielles, TR_* mais
aussi une partie de la table principale (T_PLN_JOUR_PJR), notamment les colonnes
PJR_DATE (date du jour), PAN_ID (année), PMS_ID (mois), PJM_ID (jour du mois de 1 à
31), PSM_ID (semaine de l'année de 1 à 52 ou 53), PJS_ID (jour de la semaine de 1 à
7), PJA_ID (jour de l'année de 1 à 365 ou 366) PTR_ID (trimestre de l'année) et PST_ID
(semestre de l'année).

3.3. Les mesures temporelles

Intéressons nous maintenant aux colonnes PJR_RANG_*.

Notre table est composée de lignes possédant chacune une valeur discrète : celle d'un
jour, d'une date dans la continuité du temps.
La colonne PJR_RANG_JOUR est donc numéroté en continue de façon a ce que chaque
lendemain soit incrémenté d'une unité. Autrement dit, PJR_RANG_JOUR + 1 équivaut à
ajouter un jour... Le type de données sous jacent à PJR_RANG_JOUR est donc un entier.
Mais il faut trouver une origine de numérotation. On peut la fixer arbitrairement, par
exemple au 14 octobre 1967 (c'est fou ce qu'on trouve à une date aussi arbitraire que
celle là lorqu'on cherche sur un moteur du web comme Yahoo [1]) mais l'habitude est de
se caler sur le premier janvier 1900 qui constitue le point d'origine de l'axe des dates et
par conséquent le jour 0.

Dès lors nous allons avoir la numérotation suivante :

Là où notre affaire se complique, c'est pour numéroter chaque jour en fraction de mois,
semaine, année...

En fait ce n'est pas très compliqué.
Le premier jour d'une année, par exemple le jour de l'an de 1930 :

le rang de l'année est 30,0000
le rang du mois est 30*12 + 1 = 361,0000
le rang de la semaine est 1571, 000
le rang du trimestre est 30 * 4 + 1 = 121
le rang du semestre est 30 * 2 + 1 = 61

Pour le rang de la semaine, c'est un plus difficile car il faut compter le nombre de
semaines de chaque année, cela pouvant varier entre 52 et 53... Au passage notez les
décimales !

Le lendemain de ce jour, au 2 janvier 1930, les rang sont les suivants :

année : 30 + 1/365 (365, nombre de jours de l'année) = 30,0027
mois : 361 + 1/31 (31, nombre de jours du mois) = 361,0323
semaine : 1571 + 1/7 (7, nombre de jours de la semaine) = 1571,1429
trimestre : 121 + 1/90 (90, nombre de jour du trimestre) = 121,0111
semestre : 61 + 1/181 (181, nombre de jours du semestre) = 61,0055

Etc...

Voici une deux des requêtes pour calculer ces nouvelles données. Elle concerne la mise à
jour du rang de l'année dans la table T_PLN_JOUR_PJR :

DATE RANG
---------- -----
1900-01-01 1
1900-01-02 2
1900-01-03 3
...
1900-12-31 365
1901-01-01 366
1901-01-02 367
...
1967-10-14 24757
...
1999-12-31 36523 => autrement dit 365 * 100 + 23 soit 23 anées
bisextiles !
2000-01-01 36524
...
2030-12-31 47846

-- calcul du rang ANNEE
SELECT PJR_DATE,
 CAST(
 (CAST(PAN_ID AS FLOAT) - 1899.0)
 + (CAST(PJR_RANG_JOUR AS FLOAT)
 - (SELECT CAST(PJR2.PJR_RANG_JOUR AS FLOAT)
 FROM T_PLN_JOUR_PJR PJR2
 WHERE PJR2.PJM_ID = 1
 AND PJR2.PMS_ID = 1
 AND PJR2.PAN_ID = PJR.PAN_ID +1))
 / (SELECT CAST(COUNT(*) AS FLOAT)
 FROM T_PLN_JOUR_PJR PJR3
 WHERE PJR3.PAN_ID = PJR.PAN_ID)
 AS DECIMAL(10,4)) AS PJR_RANG_AN
FROM T_PLN_JOUR_PJR PJR

=> le rang de l'année [1900 = 0]
=> plus (le rang du jour
=> moins le nombre de jours
 pour aller à l'année
 suivante

=>) divisé par le nombre
 de jours écoulés dans l'année

-- calcul du rang MOIS
SELECT PJR_DATE,
 CAST(
 (CAST(PAN_ID AS FLOAT) - 1900.0) * 12 + PMS_ID + 1
 + (CAST(PJR_RANG_JOUR AS FLOAT)
 - (SELECT CAST(PJR2.PJR_RANG_JOUR AS FLOAT)
 FROM T_PLN_JOUR_PJR PJR2
 WHERE PJR2.PJM_ID = 1
 AND PJR2.PMS_ID = (PJR.PMS_ID % 12) + 1
 AND PJR2.PAN_ID =
 CASE
 WHEN PJR.PMS_ID + 1 = 13
 THEN PJR.PAN_ID +1
 ELSE PJR.PAN_ID
 END))

=> le rang du mois [12 mois par an]
=> plus (le rang du jour
=> moins le nombre de jours
 pour aller au début du
 mois suivant [attention
 au passage de l'année
 suivante]

=>) divisé par le nombre

Page 8 of 26Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des dé...

14/04/2008http://sqlpro.developpez.com/cours/gestiontemps/

Bien évidemment ces requêtes peuvent être transformées en requêtes de mise à jour
dont on trouvera une version en annexe...

Une fois ces données saisie dans notre table, les calculs sur les mesures temporelles
deviennent triviaux. Pour nous aider à voir comment cela fonctionne, nous allons ajouter
une table de test qui servira pour nos calculs.

Exemple :

3.3.1. Le nombre de ... jour, mois, annéé, trimestre, semestre

Comment donc obtenir le nombre de... jour, mois, annéé, trimestre, semestre entre deux
dates ?

Le nombre de jours s'obtient par sous straction du rang jour. Mais pour faire cette
soustraction il faut deux valeurs de rang jour, donc, deux fois la table T_PLN_JOUR_PJR
dans la requête :

Bien entendu, les calculs de nombre de mois, années, etc... sont tout aussi triviaux :

 / (SELECT CAST(COUNT(*) AS FLOAT)
 FROM T_PLN_JOUR_PJR PJR3
 WHERE PJR3.PMS_ID = PJR.PMS_ID
 AND PJR3.PAN_ID = PJR.PAN_ID)
 AS DECIMAL(10,4)) AS PJR_RANG_MOIS
FROM T_PLN_JOUR_PJR PJR

 de jours dans le mois

NOTA : j'ai utilisé ici la fonction %
qui fait le modulo.

-- calcul du rang SEMAINE
SELECT PJR_DATE,
 CAST(
 CAST(PSM_ID AS FLOAT) + 51
 + (SELECT SUM(MAX_PSM_ID)
 FROM (SELECT MAX(PSM_ID) AS MAX_PSM_ID
 FROM T_PLN_JOUR_PJR
 WHERE PAN_ID < PJR.PAN_ID
 GROUP BY PAN_ID)
 T)
 + (CAST(PJS_ID AS FLOAT) - 1) / 7
 AS DECIMAL(10,4)) AS PJR_RANG_SEMAINE
FROM T_PLN_JOUR_PJR PJR

On utilise ici une astuce vu que l'on a toujours
le même nombre de jour dans une semaine.
Il suffit donc de rajouter 1/7 à chaque jour,
les jours étant numéroté de 1 à 7. On a ainsi :
(1 [pour lundi] - 1) / 7
(2 [pour mardi] - 1) / 7
etc...
Ceci suppose quand même que l'on a bien
numéroté les semaines depuis l'origine
c'est à dire le premier janvier 1900,
sinon il faut y rajouter le nombre de semaines
cumulées que l'on trouve en annexe

-- calcul du rang TRIMESTRE
SELECT PJR_DATE,
 CAST((CAST(PAN_ID AS FLOAT) - 1900) * 4 + PTR_ID
 + (CAST((SELECT COUNT(*)
 FROM T_PLN_JOUR_PJR PJR2
 WHERE PJR2.PTR_ID = PJR.PTR_ID
 AND PJR2.PAN_ID = PJR.PAN_ID
 AND PJR2.PJR_DATE <= PJR.PJR_DATE)
 AS FLOAT) - 1)
 / (CAST((SELECT COUNT(*)
 FROM T_PLN_JOUR_PJR PJR3
 WHERE PJR3.PTR_ID = PJR.PTR_ID
 AND PJR3.PAN_ID = PJR.PAN_ID)
 AS FLOAT))
 AS DECIMAL(10,4)) AS RANG_TIMESTRE
FROM T_PLN_JOUR_PJR PJR

=> nombre de trimestre
=> plus (nombre de jours écoulé
 depuis le début du trimestre

=>) divisé par le nombre de jours
 du trimestre

-- calcul du rang SEMESTRE
SELECT PJR_DATE,
 CAST((CAST(PAN_ID AS FLOAT) - 1900) * 2 + PST_ID
-- + nombre de jours écoulé
 + (CAST((SELECT COUNT(*)
 FROM T_PLN_JOUR_PJR PJR2
 WHERE PJR2.PST_ID = PJR.PST_ID
 AND PJR2.PAN_ID = PJR.PAN_ID
 AND PJR2.PJR_DATE <= PJR.PJR_DATE)
 AS FLOAT) - 1)

-- divisé par le total de jours
 / (CAST((SELECT COUNT(*)
 FROM T_PLN_JOUR_PJR PJR3
 WHERE PJR3.PST_ID = PJR.PST_ID
 AND PJR3.PAN_ID = PJR.PAN_ID) AS FLOAT))
 AS DECIMAL(10,4)) AS RANG_SEMESTRE
FROM T_PLN_JOUR_PJR PJR

Pour les semestre le principe est le même
que pour celui des trimestres.
Le 4 est changé en deux, et la requête
porte sur la colonne PST_ID au lieu de PTR_ID

CREATE TABLE TEST_PLN
(DATE_DEBUT DATE,
 DATE_FIN DATE)

INSERT INTO TEST_PLN VALUES ('2001-01-15', '2003-05-18')
INSERT INTO TEST_PLN VALUES ('2003-01-15', '2003-01-18')
INSERT INTO TEST_PLN VALUES ('2004-12-24', '2006-12-23')
INSERT INTO TEST_PLN VALUES ('2002-11-11', '2003-12-12')

SELECT DATE_DEBUT, DATE_FIN,
 PJR2.PJR_RANG_JOUR - PJR1.PJR_RANG_JOUR AS NOMBRE_JOUR
FROM TEST_PLN TPN
 INNER JOIN T_PLN_JOUR_PJR PJR1
 ON TPN.DATE_DEBUT = PJR1.PJR_DATE
 INNER JOIN T_PLN_JOUR_PJR PJR2
 ON TPN.DATE_FIN = PJR2.PJR_DATE

DATE_DEBUT DATE_FIN NOMBRE_JOUR
----------- ----------- -----------
2001-01-15 2003-05-18 853
2003-01-15 2003-01-18 3
2004-12-24 2006-12-23 729
2002-11-11 2003-12-12 396

SELECT DATE_DEBUT, DATE_FIN,
 PJR2.PJR_RANG_JOUR - PJR1.PJR_RANG_JOUR AS NOMBRE_JOUR,
 PJR2.PJR_RANG_AN - PJR1.PJR_RANG_AN AS NOMBRE_ANNEE,
 PJR2.PJR_RANG_MOIS - PJR1.PJR_RANG_MOIS AS NOMBRE_MOIS,
 PJR2.PJR_RANG_SEMAINE - PJR1.PJR_RANG_SEMAINE AS NOMBRE_SEMAINE,
 PJR2.PJR_RANG_TRIMESTRE - PJR1.PJR_RANG_TRIMESTRE AS NOMBRE_TRIMESTRE
FROM TEST_PLN TPN
 INNER JOIN T_PLN_JOUR_PJR PJR1
 ON TPN.DATE_DEBUT = PJR1.PJR_DATE
 INNER JOIN T_PLN_JOUR_PJR PJR2
 ON TPN.DATE_FIN = PJR2.PJR_DATE

DATE_DEBUT DATE_FIN NOMBRE_JOUR NOMBRE_ANNEE NOMBRE_MOIS NOMBRE_SEMAINE
NOMBRE_TRIMESTRE
----------- ----------- ----------- ------------- ------------- -------------- -----

2001-01-15 2003-05-18 853 2.3369 28.0968 121.8571
9.3609
2003-01-15 2003-01-18 3 .0082 .0968 .4286 .0333
2004-12-24 2006-12-23 729 1.9972 23.9678 105.1429
7.9892
2002-11-11 2003-12-12 396 1.0849 13.0215 56.5714

Page 9 of 26Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des dé...

14/04/2008http://sqlpro.developpez.com/cours/gestiontemps/

3.3.2. Comment ajouter exactement un deux ou trois mois, et
pouvoir retomber sur nos date en les y retranchant ?

L'ajout et la soustraction sont presque aussi simple :

NOTEZ la différence entre l'ajout de jours, toujours exact parce que sur des entiers, et
l'ajout de mois, année, trimestre, etc... qui, opérant sur des nombres réels doit faire
l'objet d'une inéquation pour laquelle on recherche le minimum.

Attention donc au signe de cet inéquation et à l'utilisation de l'agrégat :

Dernier essais, reprenons l'exemple vu avec SQL Server et ses limites de calculs
temporels...

3.3.3. Toutes les ... date, mois, années ... entre deux dates

Autre demande qui revient souvent, connaître toutes les dates, les mois, les années
entre deux dates :

4.3369

-- ajout de 10 jours à DATE DEBUT
SELECT DATE_DEBUT, PJR2.PJR_DATE
FROM TEST_PLN TPN
 INNER JOIN T_PLN_JOUR_PJR PJR1
 ON TPN.DATE_DEBUT = PJR1.PJR_DATE
 INNER JOIN T_PLN_JOUR_PJR PJR2
 ON PJR2.PJR_RANG_JOUR = PJR1.PJR_RANG_JOUR + 10

DATE_DEBUT DATE_PLUS_10_JOUR
----------- -----------------
2001-01-15 2001-01-25
2002-11-11 2002-11-21
2003-01-15 2003-01-25
2004-12-24 2005-01-03

-- ajout de 5 mois
SELECT DATE_DEBUT, MIN(PJR2.PJR_DATE) AS DATE_PLUS_5_MOIS
FROM TEST_PLN TPN
 INNER JOIN T_PLN_JOUR_PJR PJR1
 ON TPN.DATE_DEBUT = PJR1.PJR_DATE
 INNER JOIN T_PLN_JOUR_PJR PJR2
 ON PJR2.PJR_RANG_MOIS >= PJR1.PJR_RANG_MOIS + 5
GROUP BY TPN.DATE_DEBUT

DATE_DEBUT DATE_PLUS_5_MOIS
----------- -----------------
2001-01-15 2001-06-15
2002-11-11 2003-04-11
2003-01-15 2003-06-15
2004-12-24 2005-05-24

-- retrait de 3 trimestres
SELECT DATE_DEBUT, MAX(PJR2.PJR_DATE) AS DATE_MOINS_3_TRIMESTRE
FROM TEST_PLN TPN
 INNER JOIN T_PLN_JOUR_PJR PJR1
 ON TPN.DATE_DEBUT = PJR1.PJR_DATE
 INNER JOIN T_PLN_JOUR_PJR PJR2
 ON PJR2.PJR_RANG_TRIMESTRE < PJR1.PJR_RANG_TRIMESTRE - 3
GROUP BY TPN.DATE_DEBUT

DATE_DEBUT DATE_MOINS_3_TRIMESTRE
----------- -----------------------
2001-01-15 2000-04-15
2002-11-11 2002-02-10
2003-01-15 2002-04-15
2004-12-24 2004-03-24
REMARQUE : la différence du jour du mois
dans les dates s'explique par le fait
que les trimestres n'ont pas tous le même
nombre de jours...

AJOUT an, mois, semaine,
trimestre, semestre

condition >= dans la
jointure

condition >= dans la
jointure

RETRAIT an, mois, semaine,
trimestre, semestre

agrégat MAX dans le
SELECT condition < dans la jointure

INSERT INTO TEST_PLN VALUES ('2002-01-31', NULL)

-- ajout d'un mois
SELECT DATE_DEBUT, MIN(PJR2.PJR_DATE) AS DATE_PLUS_1_MOIS
FROM TEST_PLN TPN
 INNER JOIN T_PLN_JOUR_PJR PJR1
 ON TPN.DATE_DEBUT = PJR1.PJR_DATE
 INNER JOIN T_PLN_JOUR_PJR PJR2
 ON PJR2.PJR_RANG_MOIS >= PJR1.PJR_RANG_MOIS + 1
GROUP BY TPN.DATE_DEBUT

DATE_DEBUT DATE_PLUS_1_MOIS
----------- -----------------
2002-01-31 2002-03-01

REMARQUE : surprise, le mois de février
semble ignoré et l'ajout d'un mois au 31
janvier passe au 1er mars...

-- retrait d'un mois
SELECT DATE_DEBUT, MAX(PJR2.PJR_DATE) AS DATE_MOINS_1_MOIS
FROM TEST_PLN TPN
 INNER JOIN T_PLN_JOUR_PJR PJR1
 ON TPN.DATE_DEBUT = PJR1.PJR_DATE
 INNER JOIN T_PLN_JOUR_PJR PJR2
 ON PJR2.PJR_RANG_MOIS < PJR1.PJR_RANG_MOIS - 1
GROUP BY TPN.DATE_DEBUT

DATE_DEBUT DATE_MOINS_1_MOIS
----------- ------------------
2002-03-01 2002-01-31

SURPRISE : nous retombons sur nos pattes !

SELECT DISTINCT DATE_DEBUT, PAN_ID, PMS_ID, DATE_FIN
FROM TEST_PLN TPN
 INNER JOIN T_PLN_JOUR_PJR PJR
 ON PJR.PJR_DATE BETWEEN TPN.DATE_DEBUT AND TPN.DATE_FIN
ORDER BY DATE_DEBUT, PAN_ID, PMS_ID

DATE_DEBUT PAN_ID PMS_ID DATE_FIN
----------- ------ ------ -----------
2001-01-15 2001 1 2003-05-18
2001-01-15 2001 2 2003-05-18
2001-01-15 2001 3 2003-05-18
2001-01-15 2001 4 2003-05-18
2001-01-15 2001 5 2003-05-18
2001-01-15 2001 6 2003-05-18
2001-01-15 2001 7 2003-05-18
2001-01-15 2001 8 2003-05-18
2001-01-15 2001 9 2003-05-18
2001-01-15 2001 10 2003-05-18
2001-01-15 2001 11 2003-05-18
2001-01-15 2001 12 2003-05-18
2001-01-15 2002 1 2003-05-18
2001-01-15 2002 2 2003-05-18
2001-01-15 2002 3 2003-05-18
2001-01-15 2002 4 2003-05-18
2001-01-15 2002 5 2003-05-18
2001-01-15 2002 6 2003-05-18
2001-01-15 2002 7 2003-05-18
2001-01-15 2002 8 2003-05-18
2001-01-15 2002 9 2003-05-18
2001-01-15 2002 10 2003-05-18
2001-01-15 2002 11 2003-05-18
2001-01-15 2002 12 2003-05-18
2001-01-15 2003 1 2003-05-18
2001-01-15 2003 2 2003-05-18
2001-01-15 2003 3 2003-05-18
2001-01-15 2003 4 2003-05-18
2001-01-15 2003 5 2003-05-18

Page 10 of 26Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ...

14/04/2008http://sqlpro.developpez.com/cours/gestiontemps/

Cela peut paraître inutile... c'est souvent indispensable.
Voici un exemple qui illustre l'absolu nécessité d'une table de dates. Notre service SAV
fait des interventions en principe tous les jours. La table et les données associées sont
les suivantes et concerne la semaine allant du lundi 4 mars au vendredi 8 mars :

Notre directeur du SAV veut savoir quel est le volume des interventions pour chaque jour
de la semaine, et effectue ma requête suivante :

Surprise ! La semaine ne compterai que 4 jours du lundi au vendredi ??? Ou est passé le
jeudi 7 ? Il n'existe pas dans la table car aucune intervention n'a eût lieu ce jour. Il aurait
fallut quand même obtenir cette date avec une valeur 0 pour le nombre d'interventions...
Quelque chose comme :

Afin de remédier à cette anomalie, il suffit de faire une jointure avec la table des dates :

L'erreur est encore plus criante si l'on tente de mesurer la moyenne du nombre
d'intervention par jour :

Or 8 interventions sur 5 jours, cela représente 1,6 intervention par jour et non 2 ! Une
statistique faussée par ce "trou".
Encore une fois la solution nous est fournit par la jointure sur la table des dates :

2002-11-11 2002 11 2003-12-12
2002-11-11 2002 12 2003-12-12
2002-11-11 2003 1 2003-12-12
2002-11-11 2003 2 2003-12-12
2002-11-11 2003 3 2003-12-12
2002-11-11 2003 4 2003-12-12
2002-11-11 2003 5 2003-12-12
2002-11-11 2003 6 2003-12-12
2002-11-11 2003 7 2003-12-12
2002-11-11 2003 8 2003-12-12
2002-11-11 2003 9 2003-12-12
2002-11-11 2003 10 2003-12-12
2002-11-11 2003 11 2003-12-12
2002-11-11 2003 12 2003-12-12

2003-01-15 2003 1 2003-01-18

2004-12-24 2004 12 2006-12-23
2004-12-24 2005 1 2006-12-23
2004-12-24 2005 2 2006-12-23
2004-12-24 2005 3 2006-12-23
2004-12-24 2005 4 2006-12-23
2004-12-24 2005 5 2006-12-23
2004-12-24 2005 6 2006-12-23
2004-12-24 2005 7 2006-12-23
2004-12-24 2005 8 2006-12-23
2004-12-24 2005 9 2006-12-23
2004-12-24 2005 10 2006-12-23
2004-12-24 2005 11 2006-12-23
2004-12-24 2005 12 2006-12-23
2004-12-24 2006 1 2006-12-23
2004-12-24 2006 2 2006-12-23
2004-12-24 2006 3 2006-12-23
2004-12-24 2006 4 2006-12-23
2004-12-24 2006 5 2006-12-23
2004-12-24 2006 6 2006-12-23
2004-12-24 2006 7 2006-12-23
2004-12-24 2006 8 2006-12-23
2004-12-24 2006 9 2006-12-23
2004-12-24 2006 10 2006-12-23
2004-12-24 2006 11 2006-12-23
2004-12-24 2006 12 2006-12-23

CREATE TABLE T_SAV
(SAV_ID INTEGER NOT NULL PRIMARY KEY,
 SAV_DATE_INTERV DATE,
 SAV_NATURE_INTERV VARCHAR(32),
 SAV_RESOLUE BIT(1) NOT NULL DEFAULT 0)

INSERT INTO T_SAV VALUES(1, '2002-03-04', 'Imprimante bloquée', 1)
INSERT INTO T_SAV VALUES(2, '2002-03-04', 'Ecran HS', 0)
INSERT INTO T_SAV VALUES(3, '2002-03-05', 'Disque défectueux, changé', 1)
INSERT INTO T_SAV VALUES(4, '2002-03-06', 'Clavier cassé, remplacé', 1)
INSERT INTO T_SAV VALUES(5, '2002-03-06', 'Lecteur CD HS', 0)
INSERT INTO T_SAV VALUES(6, '2002-03-08', 'Base de registre endommagé', 0)
INSERT INTO T_SAV VALUES(7, '2002-03-08', 'Souris encrassée', 1)
INSERT INTO T_SAV VALUES(8, '2002-03-08', 'Lecteur bande encrassé', 1)

SELECT COUNT(*) AS NOMBRE, SAV_DATE_INTERV
FROM T_SAV
GROUP BY SAV_DATE_INTERV

NOMBRE SAV_DATE_INTERV
----------- ---------------
2 2002-03-04
1 2002-03-05
2 2002-03-06
3 2002-03-08

NOMBRE SAV_DATE_INTERV
----------- ----------
2 2002-03-04
1 2002-03-05
2 2002-03-06
0 2002-03-07 <= ligne manquante...
3 2002-03-08

SELECT COUNT(SAV_ID) AS NOMBRE,
 PJR_DATE
FROM T_SAV
 RIGHT OUTER JOIN T_PLN_JOUR_PJR
 ON PJR_DATE = SAV_DATE_INTERV
WHERE PJR_DATE BETWEEN (SELECT MIN(SAV_DATE_INTERV) FROM T_SAV)
 AND (SELECT MAX(SAV_DATE_INTERV) FROM T_SAV)
GROUP BY PJR_DATE
ORDER BY PJR_DATE

NOMBRE PJR_DATE
----------- ----------
2 2002-03-04
1 2002-03-05
2 2002-03-06
0 2002-03-07
3 2002-03-08

SELECT AVG(CAST(NOMBRE AS FLOAT)) AS MOYENNE_JOUR
FROM (SELECT COUNT(*) AS NOMBRE, SAV_DATE_INTERV
 FROM T_SAV
 GROUP BY SAV_DATE_INTERV) T

MOYENNE_JOUR

2.0

SELECT AVG(CAST(NOMBRE AS FLOAT))
FROM (SELECT COUNT(SAV_ID) AS NOMBRE,
 PJR_DATE
FROM T_SAV
 RIGHT OUTER JOIN T_PLN_JOUR_PJR

MOYENNE_JOUR

Page 11 of 26Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ...

14/04/2008http://sqlpro.developpez.com/cours/gestiontemps/

4. Dates partielles

Il arrive que l'on doive stocker des dates dont certaines parties sont inconnues ou
imprécises. Plusieurs solutions sont envisageables : l'utilisation de données séparées
pour les éléments composant les dates ou bien l'utilisation d'une fourchette de dates.

4.1. Dates composites

Cette solution consiste à représenter les dates sous la forme de 3 colonnes : AN, MOIS et
JOUR. L'important est de spécifier que ces colonnes peuvent être vide... Autrement dit il
ne faut pas construire ces colonnes avec l'option NOT NULL.

Exemples :

A l'insertion comme lors des mises à jour on veillera a ne stocker que les éléments
connus des dates.

Voici maintenant comment les requêtes doivent se présenter dans différents cas de
figure :

Rechercher les zigzornifles datés du 4/5/1990 :

Les zigzornifles datant de mai 1990 :

Les zigzornifles de l'an 1990 :

Les zigzornifles entre le 4/5/1990 et le 8/7/1990 :

Mais si votre SGBDR ne supporte pas le constructeur de lignes valuées, alors il faut écrire
un équivalent SQL.

Sur le constructeur de lignes valuées, lire : Constructeur de ligne valuées (ROW VALUE
CONSTRUCTOR)

4.2. Fourchette de date

La seconde technique consiste à créer deux colonnes de date afin de définir un
intervalle. Voici un exemple du modèle de table :

Exemples :

Si la date est complète, on veillera à la recopier dans les deux colonnes. Pour cela on eut
s'aider d'un trigger pour qu'en cas de présence du NULL dans la seconde date on

 ON PJR_DATE = SAV_DATE_INTERV
 WHERE PJR_DATE BETWEEN (SELECT MIN(SAV_DATE_INTERV) FROM T_SAV)
 AND (SELECT MAX(SAV_DATE_INTERV) FROM T_SAV)
 GROUP BY PJR_DATE) T

1.6000000000000001

CREATE TABLE T_DATES_PARTIELLES_DTP
(...
 DTP_AN INTEGER,
 DPT_MOIS INTEGER,
 DPT_JOUR INTEGER)

SELECT ...
FROM ...
WHERE DPT_JOUR = 4
 AND DPT_MOIS = 5
 AND DPT_AN = 1990

SELECT ...
FROM ...
WHERE DPT_MOIS = 5
 AND DPT_AN = 1990

SELECT ...
FROM ...
WHERE DPT_AN = 1990

SELECT ...
FROM ...
WHERE (COALESCE(DPT_JOUR, 0),
 COALESCE(DPT_MOIS, 0),
 COALESCE(DPT_AN, 0)) >= (4, 5, 1990)
 AND (COALESCE(DPT_JOUR, 0),
 COALESCE(DPT_MOIS, 0),
 COALESCE(DPT_AN, 0)) <= (8, 7, 1990)

SELECT ...
FROM ...
WHERE (COALESCE(DPT_JOUR, 0) >= 4
 OR (COALESCE(DPT_JOUR, 0) = 4
 AND COALESCE(DPT_MOIS, 0) >= 5)
 OR (COALESCE(DPT_JOUR, 0) = 4
 AND COALESCE(DPT_MOIS, 0) = 5
 AND COALESCE(DPT_AN, 0)) >= 1990))
 AND (COALESCE(DPT_JOUR, 0) <= 8
 OR (COALESCE(DPT_JOUR, 0) = 8
 AND COALESCE(DPT_MOIS, 0) <= 7)
 OR (COALESCE(DPT_JOUR, 0) = 8
 AND COALESCE(DPT_MOIS, 0) = 7
 AND COALESCE(DPT_AN, 0)) <= 1990))

CREATE TABLE T_DATES_INCOMPLETE_DTI
(...
 DTI_DATE_MIN DATE,
 DTI_DATE_MAX DATE)

Page 12 of 26Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ...

14/04/2008http://sqlpro.developpez.com/cours/gestiontemps/

reprenne la valeur de la première date.

A l'insertion, comme à la mise à jour, la partie de date qui est inconnue doit prendre la
plage maximale des valeurs. Par exemple si nous voulons insérer un brandouillon daté de
juin 1990 sans que nous en connaissions le jour, il convient d'insérer de la manière
suivante :

Voici maintenant comment les requêtes doivent se présenter dans différents cas de
figure :

Rechercher les brandouillons datés du 4/5/1990 :

Les deux requêtes devant donner les mêmes résultats.

Les brandouillons datant de mai 1990 :

Les brandouillons de l'an 1990 :

Les brandouillons entre le 4/5/1990 et le 8/7/1990 :

4.3. Affinage

Ces deux modèles possèdent néanmoins un inconvénient... En effet, si notre utilisateur
veut reprendre dans sa requête les bidules situées entre le 4/5/1990 et le 8/7/1990, il
convient de se demander si un zirzornifle ou un brandouillon daté de mai 1990 sans
précision de jour doit figurer dans le résultat !
Car l'abscence de la connaissance du jour, ne signifie nullement qu'il est obligatoirement
inférieur au 4 mai 1990...

Dans ce cas, que l'on pourrait apeller "critère externe", lever cette ambiguité peut être
fait de différentes manières...

Dans la première représentation (dates composites) une simple modification de la
requête suffit :

Les valeurs du coalesce sont, dans le premier prédicat de filtrage le dernier jour du mois
et le mois de la borne basse du filtre, dans le second prédicat le premier jour du mois et
le mois de la borne haute du filtre.

Le problème est plus complexe concernat la seconde représentation. En effet l'indication
de l'imprécision de la date nous est donné par le fait que DTI_DATE_MIN est différent de
DTI_DATE_MAX.
Il faut alors réaliser une requête plus complexe :

Dans le second prédicat, on reprend les dates de début de mois de la borne basse et de
fin de mois de la borne haute si les dates min et max sont différentes.

5. Conclusion

Voici un ensemble de données et ses règles qui marchent de manière irréprochable afin
de traiter tous les cas de figure de manipulation portant sur des dates. Bien entendu
vous pouvez transformer ces requêtes en procédures stockées voire en fonction

INSERT INTO T_DATES_INCOMPLETE_DTI (..., DTI_DATE_MIN DATE, DTI_DATE_MAX DATE)
 VALUES (..., '1990-06-01' , '1990-06-30')

SELECT ...
FROM ...
WHERE DPI_DATE_MIN = '1990-05-04'
 AND DPT_DATE_MIN = DATE_MAX

SELECT ...
FROM ...
WHERE DPI_DATE_MAX = '1990-05-04'
 AND DPT_DATE_MIN = DATE_MAX

SELECT ...
FROM ...
WHERE DPI_DATE_MIN >= '1990-05-01'
 AND DPI_DATE_MAX <= '1990-05-31'

SELECT ...
FROM ...
WHERE DPI_DATE_MIN >= '1990-01-01'
 AND DPI_DATE_MAX <= '1990-12-31'

SELECT ...
FROM ...
WHERE DPI_DATE_MIN >= '1990-05-04'
 AND DPI_DATE_MAX <= '1990-07-08'

SELECT ...
FROM ...
WHERE (COALESCE(DPT_JOUR, 31),
 COALESCE(DPT_MOIS, 5),
 COALESCE(DPT_AN, 0)) >= (4, 5, 1990)
 AND (COALESCE(DPT_JOUR, 1),
 COALESCE(DPT_MOIS, 7),
 COALESCE(DPT_AN, 0)) <= (8, 7, 1990)

SELECT ...
FROM ...
-- date exacte
WHERE (DPI_DATE_MIN >= '1990-05-04'
 AND DPI_DATE_MAX <= '1990-07-08'
 AND DPI_DATE_MIN = DPI_DATE_MAX)
-- date partielle
OR (DPI_DATE_MIN >= '1990-05-01'
 AND DPI_DATE_MAX <= '1990-07-31'
 AND DPI_DATE_MIN <> DPI_DATE_MAX)

Page 13 of 26Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ...

14/04/2008http://sqlpro.developpez.com/cours/gestiontemps/

utilisateurs si votre SGBDR en est doté.

Mais, peut être le volume de données à manipuler vous effraye t-il ?
A titre d'indication, sous SQL server v7 le volume des données pour 30 années de dates
(2000 à 2030), soit plus de 11 300 lignes, représente : 6 Mo index compris... Pour 130
années, c'est à dire les dates de 1900 à 2030 le volume des données est de 15Mo... (plus
de 47 500 lignes). Quand son sait que la clef de cette table est une date et se trouve
organisée généralement en cluster, on ne manipule jamais plus de 1 Mo de données si
l'on ne fait pas de calculs sur une plage de dates de plus de 5 à 6 ans.

6. ANNEXE - les scripts de création du modèle de
planning...
/* == */
/* Nom de la base : PLN_PLANNING */
/* Nom de SGBD : SQL 2 - standard ISO 1992 */
/* Date de création : 04/08/2002 17:50 */
/* == */

-- version avec domaines

CREATE DOMAIN D_PLN_ANNEE SMALLINT
CONSTRAINT CKD_ANNEE CHECK (VALUE BETWEEN 1 AND 9999)
;

CREATE DOMAIN D_PLN_BOOLEEN bit(1)
;

CREATE DOMAIN D_PLN_DATE DATE
;

CREATE DOMAIN D_PLN_ENTIER_AUTOINC INTEGER
CONSTRAINT CKD_ENTIER CHECK (VALUE >= 1)
;

CREATE DOMAIN D_PLN_ENTIER_NAT_LONG INTEGER
CONSTRAINT CKD_ENTIER_LONG CHECK (VALUE >= 1)
;

CREATE DOMAIN D_PLN_HEURE SMALLINT
CONSTRAINT CKD_HEURE CHECK (VALUE BETWEEN 0 AND 24)
;

CREATE DOMAIN D_PLN_HEURE_DECIMALE FLOAT
CONSTRAINT CKD_HEURE_DEC CHECK (VALUE BETWEEN 0 AND 24)
;

CREATE DOMAIN D_PLN_JOUR_AN SMALLINT
CONSTRAINT CKD_JOUR_AN CHECK (VALUE BETWEEN 1 AND 366)
;

CREATE DOMAIN D_PLN_JOUR_MOIS SMALLINT
CONSTRAINT CKD_JOUR_MOIS CHECK (VALUE BETWEEN 1 AND 31)
;

CREATE DOMAIN D_PLN_JOUR_SEMAINE SMALLINT
CONSTRAINT CKD_JOUR_SEMAINE CHECK (VALUE 1 AND 7)
;

CREATE DOMAIN D_PLN_LIB_COURT CHAR(32)
;

CREATE DOMAIN D_PLN_LIB_LONG VARCHAR(256)
;

CREATE DOMAIN D_PLN_MINUTE SMALLINT
CONSTRAINT CKD_MINUTE CHECK (VALUE BETWEEN 0 AND 60)
;

CREATE DOMAIN D_PLN_MOIS SMALLINT
CONSTRAINT CKD_MOIS CHECK (VALUE BETWEEN 1 AND 12)
;

CREATE DOMAIN D_PLN_SEMAINE SMALLINT
CONSTRAINT CKD_SEMAINE CHECK (VALUE BETWEEN 1 AND 53)
;

CREATE DOMAIN D_PLN_SEMESTRE SMALLINT
CONSTRAINT CKD_SEMESTRE CHECK (VALUE BETWEEN 1 AND 2)
;

CREATE DOMAIN D_PLN_TRIMESTRE SMALLINT
CONSTRAINT CKD_TRIMESTRE CHECK (VALUE BETWEEN 1 AND 4)
;

CREATE DOMAIN D_PLN_RANG DECIMAL (10,4)
CONSTRAINT CKD_RANG CHECK (VALUE > 0)
;

/* == */
/* Table : TR_PLN_ANNEE_PAN */
/* == */
create table TR_PLN_ANNEE_PAN
(
 PAN_ID T_D_PLN_ANNEE not null,
 PAN_BISEXTILE T_D_PLN_BOOLEEN not null,
 constraint PK_TR_PLN_ANNEE_PAN primary key (PAN_ID)
)
;

/* == */
/* Table : TR_PLN_MOIS_PMS */
/* == */
create table TR_PLN_MOIS_PMS
(
 PMS_ID T_D_PLN_MOIS not null,
 PMS_NOM_MOIS T_D_PLN_LIB_COURT not null,
 constraint PK_TR_PLN_MOIS_PMS primary key (PMS_ID)
)
;

Page 14 of 26Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ...

14/04/2008http://sqlpro.developpez.com/cours/gestiontemps/

/* == */
/* Table : TR_PLN_JOUR_MOIS_PJM */
/* == */
create table TR_PLN_JOUR_MOIS_PJM
(
 PJM_ID T_D_PLN_JOUR_MOIS not null,
 constraint PK_TR_PLN_JOUR_MOIS_PJM primary key (PJM_ID)
)
;

/* == */
/* Table : TR_PLN_SEMAINE_PSM */
/* == */
create table TR_PLN_SEMAINE_PSM
(
 PSM_ID T_D_PLN_SEMAINE not null,
 constraint PK_TR_PLN_SEMAINE_PSM primary key (PSM_ID)
)
;

/* == */
/* Table : TR_PLN_JOUR_FERIE_MOBILE_PFM */
/* == */
create table TR_PLN_JOUR_FERIE_MOBILE_PFM
(
 PFM_ID T_D_PLN_ENTIER_AUTOINC not null,
 PFM_LIBELLE char(64) not null,
 constraint PK_TR_PLN_JOUR_FERIE_MOBILE_PF primary key (PFM_ID)
)
;

/* == */
/* Table : TR_PLN_JOUR_SEMAINE_PJS */
/* == */
create table TR_PLN_JOUR_SEMAINE_PJS
(
 PJS_ID T_D_PLN_JOUR_SEMAINE not null,
 PJS_LIBELLE T_D_PLN_LIB_COURT not null,
 constraint PK_TR_PLN_JOUR_SEMAINE_PJS primary key (PJS_ID)
)
;

/* == */
/* Table : TR_PLN_JOUR_ANNEE_PJA */
/* == */
create table TR_PLN_JOUR_ANNEE_PJA
(
 PJA_ID T_D_PLN_JOUR_AN not null,
 constraint PK_TR_PLN_JOUR_ANNEE_PJA primary key (PJA_ID)
)
;

/* == */
/* Table : TR_PLN_TRIMESTRE_PTR */
/* == */
create table TR_PLN_TRIMESTRE_PTR
(
 PTR_ID T_D_PLN_TRIMESTRE not null,
 PTR_LIBELLE T_D_PLN_LIB_COURT not null,
 constraint PK_TR_PLN_TRIMESTRE_PTR primary key (PTR_ID)
)
;

/* == */
/* Table : TR_PLN_SEMESTRE_PST */
/* == */
create table TR_PLN_SEMESTRE_PST
(
 PST_ID T_D_PLN_SEMESTRE not null,
 PST_LIBELLE T_D_PLN_LIB_COURT not null,
 constraint PK_TR_PLN_SEMESTRE_PST primary key (PST_ID)
)
;

/* == */
/* Table : TR_PLN_INTERVALLE_TRAVAIL_PIT */
/* == */
create table TR_PLN_INTERVALLE_TRAVAIL_PIT
(
 PIT_HEURE_DEBUT T_D_PLN_HEURE not null,
 PIT_MINUTE_DEBUT T_D_PLN_MINUTE not null
 default 0,
 PIT_HEURE_FIN T_D_PLN_HEURE not null,
 PIT_MINUTE_FIN T_D_PLN_MINUTE not null
 default 0,
 constraint PK_TR_PLN_INTERVALLE_TRAVAIL_P primary key (PIT_HEURE_DEBUT,
PIT_MINUTE_DEBUT)
)
;

/* == */
/* Table : T_PLN_JOUR_PJR */
/* == */
create table T_PLN_JOUR_PJR
(
 PJR_DATE T_D_PLN_DATE not null,
 PAN_ID T_D_PLN_ANNEE null ,
 PMS_ID T_D_PLN_MOIS null ,
 PJM_ID T_D_PLN_JOUR_MOIS null ,
 PSM_ID T_D_PLN_SEMAINE null ,
 PJS_ID T_D_PLN_JOUR_SEMAINE null ,
 PJA_ID T_D_PLN_JOUR_AN null ,
 PTR_ID T_D_PLN_TRIMESTRE null ,
 PST_ID T_D_PLN_SEMESTRE null ,
 PJR_RANG_JOUR T_D_PLN_ENTIER_NAT_LONG not null,
 PJR_RANG_SEMAINE T_D_PLN_RANG null ,
 PJR_RANG_MOIS T_D_PLN_RANG null ,
 PJR_RANG_TRIMESTRE T_D_PLN_RANG null ,
 PJR_RANG_SEMESTRE T_D_PLN_RANG null ,
 PJR_RANG_AN T_D_PLN_RANG null ,
 PJR_ALEA T_D_PLN_ENTIER_NAT_LONG not null,
 constraint PK_T_PLN_JOUR_PJR primary key (PJR_DATE)
)
;

Page 15 of 26Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ...

14/04/2008http://sqlpro.developpez.com/cours/gestiontemps/

/* == */
/* Table : TR_PLN_JOUR_FERIE_FIXE_PJF */
/* == */
create table TR_PLN_JOUR_FERIE_FIXE_PJF
(
 PMS_ID T_D_PLN_MOIS not null,
 PJM_ID T_D_PLN_JOUR_MOIS not null,
 PJF_LIBELLE T_D_PLN_LIB_LONG not null,
 constraint PK_TR_PLN_JOUR_FERIE_FIXE_PJF primary key (PMS_ID, PJM_ID)
)
;

/* == */
/* Table : TJ_PJRPFM */
/* == */
create table TJ_PJRPFM
(
 PJR_DATE T_D_PLN_DATE not null,
 PFM_ID T_D_PLN_ENTIER_AUTOINC not null,
 constraint PK_TJ_PJRPFM primary key (PJR_DATE, PFM_ID)
)
;

/* == */
/* Table : TJ_PJSPIT */
/* == */
create table TJ_PJSPIT
(
 PJS_ID T_D_PLN_JOUR_SEMAINE not null,
 PIT_HEURE_DEBUT T_D_PLN_HEURE not null,
 PIT_MINUTE_DEBUT T_D_PLN_MINUTE not null
 default 0,
 constraint PK_TJ_PJSPIT primary key (PJS_ID, PIT_HEURE_DEBUT, PIT_MINUTE_DEBUT)
)
;

alter table T_PLN_JOUR_PJR
 add constraint FK_T_PLN_JO_L_PJRPAN_TR_PLN_A foreign key (PAN_ID)
 references TR_PLN_ANNEE_PAN (PAN_ID)
;

alter table T_PLN_JOUR_PJR
 add constraint FK_T_PLN_JO_L_PJRPMS_TR_PLN_M foreign key (PMS_ID)
 references TR_PLN_MOIS_PMS (PMS_ID)
;

alter table T_PLN_JOUR_PJR
 add constraint FK_T_PLN_JO_L_PJRPJM_TR_PLN_J foreign key (PJM_ID)
 references TR_PLN_JOUR_MOIS_PJM (PJM_ID)
;

alter table T_PLN_JOUR_PJR
 add constraint FK_T_PLN_JO_L_PJRPSM__TR_PLN_S foreign key (PSM_ID)
 references TR_PLN_SEMAINE_PSM (PSM_ID)
;

alter table T_PLN_JOUR_PJR
 add constraint FK_T_PLN_JO_L_PJRPJS_TR_PLN_J foreign key (PJS_ID)
 references TR_PLN_JOUR_SEMAINE_PJS (PJS_ID)
;

alter table T_PLN_JOUR_PJR
 add constraint FK_T_PLN_JO_L_PJRPJA_TR_PLN_J foreign key (PJA_ID)
 references TR_PLN_JOUR_ANNEE_PJA (PJA_ID)
;

alter table T_PLN_JOUR_PJR
 add constraint FK_T_PLN_JO_L_PJRPTR_TR_PLN_T foreign key (PTR_ID)
 references TR_PLN_TRIMESTRE_PTR (PTR_ID)
;

alter table T_PLN_JOUR_PJR
 add constraint FK_T_PLN_JO_L_PJRPST_TR_PLN_S foreign key (PST_ID)
 references TR_PLN_SEMESTRE_PST (PST_ID)
;

alter table TR_PLN_JOUR_FERIE_FIXE_PJF
 add constraint FK_TR_PLN_J_L_PJFPJM_TR_PLN_J foreign key (PJM_ID)
 references TR_PLN_JOUR_MOIS_PJM (PJM_ID)
;

alter table TR_PLN_JOUR_FERIE_FIXE_PJF
 add constraint FK_TR_PLN_J_L_PJFPMS_TR_PLN_M foreign key (PMS_ID)
 references TR_PLN_MOIS_PMS (PMS_ID)
;

alter table TJ_PJRPFM
 add constraint FK_TJ_PJRPF_L_PJRPFM_T_PLN_JO foreign key (PJR_DATE)
 references T_PLN_JOUR_PJR (PJR_DATE)
;

alter table TJ_PJRPFM
 add constraint FK_TJ_PJRPF_L_PFMPJR_TR_PLN_J foreign key (PFM_ID)
 references TR_PLN_JOUR_FERIE_MOBILE_PFM (PFM_ID)
;

alter table TJ_PJSPIT
 add constraint FK_TJ_PJSPI_L_PJSPIT_TR_PLN_J foreign key (PJS_ID)
 references TR_PLN_JOUR_SEMAINE_PJS (PJS_ID)
;

alter table TJ_PJSPIT
 add constraint FK_TJ_PJSPI_L_PITPJS_TR_PLN_I foreign key (PIT_HEURE_DEBUT,
PIT_MINUTE_DEBUT)
 references TR_PLN_INTERVALLE_TRAVAIL_PIT (PIT_HEURE_DEBUT, PIT_MINUTE_DEBUT)
;

/* n'oubliez pas d'indexer toutes les colonnes constituant clefs primaires et clefs
étrangères !!! */

/* == */
/* Nom de la base : PLN_PLANNING */
/* Nom de SGBD : SQL 2 - standard ISO 1992 */
/* Date de création : 04/08/2002 17:50 */
/* == */

Page 16 of 26Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ...

14/04/2008http://sqlpro.developpez.com/cours/gestiontemps/

-- version sans les domaines (les contraintes de domaine sont
-- reportées en contraintes de table)

/* == */
/* Table : TR_PLN_ANNEE_PAN */
/* == */
create table TR_PLN_ANNEE_PAN
(
 PAN_ID smallint not null
 constraint CKC_PAN_ID_TR_PLN_A check (PAN_ID between 1 and 9999),
 PAN_BISEXTILE bit not null,
 constraint PK_TR_PLN_ANNEE_PAN primary key (PAN_ID)
)
;

/* == */
/* Table : TR_PLN_MOIS_PMS */
/* == */
create table TR_PLN_MOIS_PMS
(
 PMS_ID smallint not null
 constraint CKC_PMS_ID_TR_PLN_M check (PMS_ID between 1 and 12),
 PMS_NOM_MOIS char(32) not null,
 constraint PK_TR_PLN_MOIS_PMS primary key (PMS_ID)
)
;

/* == */
/* Table : TR_PLN_JOUR_MOIS_PJM */
/* == */
create table TR_PLN_JOUR_MOIS_PJM
(
 PJM_ID smallint not null
 constraint CKC_PJM_ID_TR_PLN_J check (PJM_ID between 1 and 31),
 constraint PK_TR_PLN_JOUR_MOIS_PJM primary key (PJM_ID)
)
;

/* == */
/* Table : TR_PLN_SEMAINE_PSM */
/* == */
create table TR_PLN_SEMAINE_PSM
(
 PSM_ID smallint not null
 constraint CKC_PSM_ID_TR_PLN_S check (PSM_ID between 1 and 53),
 constraint PK_TR_PLN_SEMAINE_PSM primary key (PSM_ID)
)
;

/* == */
/* Table : TR_PLN_JOUR_FERIE_MOBILE_PFM */
/* == */
create table TR_PLN_JOUR_FERIE_MOBILE_PFM
(
 PFM_ID integer not null
 constraint CKC_PFM_ID_TR_PLN_J check (PFM_ID >= 1),
 PFM_LIBELLE char(64) not null,
 constraint PK_TR_PLN_JOUR_FERIE_MOBILE_PF primary key (PFM_ID)
)
;

/* == */
/* Table : TR_PLN_JOUR_SEMAINE_PJS */
/* == */
create table TR_PLN_JOUR_SEMAINE_PJS
(
 PJS_ID smallint not null
 constraint CKC_PJS_ID_TR_PLN_J check (PJS_ID between 1 and 7),
 PJS_LIBELLE char(32) not null,
 constraint PK_TR_PLN_JOUR_SEMAINE_PJS primary key (PJS_ID)
)
;

/* == */
/* Table : TR_PLN_JOUR_ANNEE_PJA */
/* == */
create table TR_PLN_JOUR_ANNEE_PJA
(
 PJA_ID smallint not null
 constraint CKC_PJA_ID_TR_PLN_J check (PJA_ID between 1 and 366),
 constraint PK_TR_PLN_JOUR_ANNEE_PJA primary key (PJA_ID)
)
;

/* == */
/* Table : TR_PLN_TRIMESTRE_PTR */
/* == */
create table TR_PLN_TRIMESTRE_PTR
(
 PTR_ID smallint not null
 constraint CKC_PTR_ID_TR_PLN_T check (PTR_ID between 1 and 4),
 PTR_LIBELLE char(32) not null,
 constraint PK_TR_PLN_TRIMESTRE_PTR primary key (PTR_ID)
)
;

/* == */
/* Table : TR_PLN_SEMESTRE_PST */
/* == */
create table TR_PLN_SEMESTRE_PST
(
 PST_ID smallint not null
 constraint CKC_PST_ID_TR_PLN_S check (PST_ID between 1 and 2),
 PST_LIBELLE char(32) not null,
 constraint PK_TR_PLN_SEMESTRE_PST primary key (PST_ID)
)
;

/* == */
/* Table : TR_PLN_INTERVALLE_TRAVAIL_PIT */
/* == */
create table TR_PLN_INTERVALLE_TRAVAIL_PIT
(
 PIT_HEURE_DEBUT smallint not null
 constraint CKC_PIT_HEURE_DEBUT_TR_PLN_I check (PIT_HEURE_DEBUT between 0
and 24),
 PIT_MINUTE_DEBUT smallint not null

Page 17 of 26Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ...

14/04/2008http://sqlpro.developpez.com/cours/gestiontemps/

 default 0
 constraint CKC_PIT_MINUTE_DEBUT_TR_PLN_I check (PIT_MINUTE_DEBUT between 0
and 60),
 PIT_HEURE_FIN smallint not null
 constraint CKC_PIT_HEURE_FIN_TR_PLN_I check (PIT_HEURE_FIN between 0 and
24),
 PIT_MINUTE_FIN smallint not null
 default 0
 constraint CKC_PIT_MINUTE_FIN_TR_PLN_I check (PIT_MINUTE_FIN between 0 and
60),
 constraint PK_TR_PLN_INTERVALLE_TRAVAIL_P primary key (PIT_HEURE_DEBUT,
PIT_MINUTE_DEBUT)
)
;

/* == */
/* Table : T_PLN_JOUR_PJR */
/* == */
create table T_PLN_JOUR_PJR
(
 PJR_DATE datetime not null,
 PAN_ID smallint null
 constraint CKC_PAN_ID_T_PLN_JO check (PAN_ID between 1 and 9999),
 PMS_ID smallint null
 constraint CKC_PMS_ID_T_PLN_JO check (PMS_ID between 1 and 12),
 PJM_ID smallint null
 constraint CKC_PJM_ID_T_PLN_JO check (PJM_ID between 1 and 31),
 PSM_ID smallint null
 constraint CKC_PSM_ID_T_PLN_JO check (PSM_ID between 1 and 53),
 PJS_ID smallint null
 constraint CKC_PJS_ID_T_PLN_JO check (PJS_ID between 1 and 7),
 PJA_ID smallint null
 constraint CKC_PJA_ID_T_PLN_JO check (PJA_ID between 1 and 366),
 PTR_ID smallint null
 constraint CKC_PTR_ID_T_PLN_JO check (PTR_ID between 1 and 4),
 PST_ID smallint null
 constraint CKC_PST_ID_T_PLN_JO check (PST_ID between 1 and 2),
 PJR_RANG int not null
 constraint CKC_PJR_RANG_T_PLN_JO check (PJR_RANG >= 1),
 PJR_RANG_SEMAINE decimal(10,4) null ,
 PJR_RANG_MOIS decimal(10,4) null ,
 PJR_RANG_TRIMESTRE decimal(10,4) null ,
 PJR_RANG_SEMESTRE decimal(10,4) null ,
 PJR_RANG_AN decimal(10,4) null ,
 PJR_ALEA int not null
 constraint CKC_PJR_ALEA_T_PLN_JO check (PJR_ALEA >= 1),
 constraint PK_T_PLN_JOUR_PJR primary key (PJR_DATE)
)
;

/* == */
/* Table : TR_PLN_JOUR_FERIE_FIXE_PJF */
/* == */
create table TR_PLN_JOUR_FERIE_FIXE_PJF
(
 PMS_ID smallint not null
 constraint CKC_PMS_ID_TR_PLN_J check (PMS_ID between 1 and 12),
 PJM_ID smallint not null
 constraint CKC_PJM_ID_TR_PLN_J check (PJM_ID between 1 and 31),
 PJF_LIBELLE varchar(256) not null,
 constraint PK_TR_PLN_JOUR_FERIE_FIXE_PJF primary key (PMS_ID, PJM_ID)
)
;

/* == */
/* Table : TJ_PJRPFM */
/* == */
create table TJ_PJRPFM
(
 PJR_DATE datetime not null,
 PFM_ID integer not null
 constraint CKC_PFM_ID_TJ_PJRPF check (PFM_ID >= 1),
 constraint PK_TJ_PJRPFM primary key (PJR_DATE, PFM_ID)
)
;

/* == */
/* Table : TJ_PJSPIT */
/* == */
create table TJ_PJSPIT
(
 PJS_ID smallint not null
 constraint CKC_PJS_ID_TJ_PJSPI check (PJS_ID between 1 and 7),
 PIT_HEURE_DEBUT smallint not null
 constraint CKC_PIT_HEURE_DEBUT_TJ_PJSPI check (PIT_HEURE_DEBUT between 0
and 24),
 PIT_MINUTE_DEBUT smallint not null
 default 0
 constraint CKC_PIT_MINUTE_DEBUT_TJ_PJSPI check (PIT_MINUTE_DEBUT between 0
and 60),
 constraint PK_TJ_PJSPIT primary key (PJS_ID, PIT_HEURE_DEBUT, PIT_MINUTE_DEBUT)
)
;

alter table T_PLN_JOUR_PJR
 add constraint FK_T_PLN_JO_L_PJRPAN_TR_PLN_A foreign key (PAN_ID)
 references TR_PLN_ANNEE_PAN (PAN_ID)
;

alter table T_PLN_JOUR_PJR
 add constraint FK_T_PLN_JO_L_PJRPMS_TR_PLN_M foreign key (PMS_ID)
 references TR_PLN_MOIS_PMS (PMS_ID)
;

alter table T_PLN_JOUR_PJR
 add constraint FK_T_PLN_JO_L_PJRPJM_TR_PLN_J foreign key (PJM_ID)
 references TR_PLN_JOUR_MOIS_PJM (PJM_ID)
;

alter table T_PLN_JOUR_PJR
 add constraint FK_T_PLN_JO_L_PJRPSM__TR_PLN_S foreign key (PSM_ID)
 references TR_PLN_SEMAINE_PSM (PSM_ID)
;

alter table T_PLN_JOUR_PJR

Page 18 of 26Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ...

14/04/2008http://sqlpro.developpez.com/cours/gestiontemps/

 add constraint FK_T_PLN_JO_L_PJRPJS_TR_PLN_J foreign key (PJS_ID)
 references TR_PLN_JOUR_SEMAINE_PJS (PJS_ID)
;

alter table T_PLN_JOUR_PJR
 add constraint FK_T_PLN_JO_L_PJRPJA_TR_PLN_J foreign key (PJA_ID)
 references TR_PLN_JOUR_ANNEE_PJA (PJA_ID)
;

alter table T_PLN_JOUR_PJR
 add constraint FK_T_PLN_JO_L_PJRPTR_TR_PLN_T foreign key (PTR_ID)
 references TR_PLN_TRIMESTRE_PTR (PTR_ID)
;

alter table T_PLN_JOUR_PJR
 add constraint FK_T_PLN_JO_L_PJRPST_TR_PLN_S foreign key (PST_ID)
 references TR_PLN_SEMESTRE_PST (PST_ID)
;

alter table TR_PLN_JOUR_FERIE_FIXE_PJF
 add constraint FK_TR_PLN_J_L_PJFPJM_TR_PLN_J foreign key (PJM_ID)
 references TR_PLN_JOUR_MOIS_PJM (PJM_ID)
;

alter table TR_PLN_JOUR_FERIE_FIXE_PJF
 add constraint FK_TR_PLN_J_L_PJFPMS_TR_PLN_M foreign key (PMS_ID)
 references TR_PLN_MOIS_PMS (PMS_ID)
;

alter table TJ_PJRPFM
 add constraint FK_TJ_PJRPF_L_PJRPFM_T_PLN_JO foreign key (PJR_DATE)
 references T_PLN_JOUR_PJR (PJR_DATE)
;

alter table TJ_PJRPFM
 add constraint FK_TJ_PJRPF_L_PFMPJR_TR_PLN_J foreign key (PFM_ID)
 references TR_PLN_JOUR_FERIE_MOBILE_PFM (PFM_ID)
;

alter table TJ_PJSPIT
 add constraint FK_TJ_PJSPI_L_PJSPIT_TR_PLN_J foreign key (PJS_ID)
 references TR_PLN_JOUR_SEMAINE_PJS (PJS_ID)
;

alter table TJ_PJSPIT
 add constraint FK_TJ_PJSPI_L_PITPJS_TR_PLN_I foreign key (PIT_HEURE_DEBUT,
PIT_MINUTE_DEBUT)
 references TR_PLN_INTERVALLE_TRAVAIL_PIT (PIT_HEURE_DEBUT, PIT_MINUTE_DEBUT)
;

/* n'oubliez pas d'indexer toutes les colonnes constituant clefs primaires et clefs
étrangères !!! */

/* == */
/* ALIMENTATION DES REFERENCES DE LA BASE PLANNING */
/* == */
/* == */
/* ALIMENTATION DES REFERENCES DE LA BASE PLANNING */
/* == */

/* insertion des données table TR_PLN_MOIS_PMS */
INSERT INTO TR_PLN_MOIS_PMS VALUES (1, 'janvier')
INSERT INTO TR_PLN_MOIS_PMS VALUES (2, 'février')
INSERT INTO TR_PLN_MOIS_PMS VALUES (3, 'mars')
INSERT INTO TR_PLN_MOIS_PMS VALUES (4, 'avril')
INSERT INTO TR_PLN_MOIS_PMS VALUES (5, 'mai')
INSERT INTO TR_PLN_MOIS_PMS VALUES (6, 'juin')
INSERT INTO TR_PLN_MOIS_PMS VALUES (7, 'juillet')
INSERT INTO TR_PLN_MOIS_PMS VALUES (8, 'août')
INSERT INTO TR_PLN_MOIS_PMS VALUES (9, 'septembre')
INSERT INTO TR_PLN_MOIS_PMS VALUES (10, 'octobre')
INSERT INTO TR_PLN_MOIS_PMS VALUES (11, 'novembre')
INSERT INTO TR_PLN_MOIS_PMS VALUES (12, 'décembre')

/* insertion des données table TR_PLN_JOUR_SEMAINE_JSM */

INSERT INTO TR_PLN_JOUR_SEMAINE_PJS VALUES (1, 'lundi')
INSERT INTO TR_PLN_JOUR_SEMAINE_PJS VALUES (2, 'mardi')
INSERT INTO TR_PLN_JOUR_SEMAINE_PJS VALUES (3, 'mercredi')
INSERT INTO TR_PLN_JOUR_SEMAINE_PJS VALUES (4, 'jeudi')
INSERT INTO TR_PLN_JOUR_SEMAINE_PJS VALUES (5, 'vendredi')
INSERT INTO TR_PLN_JOUR_SEMAINE_PJS VALUES (6, 'samedi')
INSERT INTO TR_PLN_JOUR_SEMAINE_PJS VALUES (7, 'dimanche')

/* insertion des données table TR_PLN_JOUR_MOIS_PJM */
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (1)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (2)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (3)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (4)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (5)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (6)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (7)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (8)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (9)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (10)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (11)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (12)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (13)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (14)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (15)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (16)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (17)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (18)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (19)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (20)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (21)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (22)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (23)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (24)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (25)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (26)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (27)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (28)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (29)
INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (30)

Page 19 of 26Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ...

14/04/2008http://sqlpro.developpez.com/cours/gestiontemps/

INSERT INTO TR_PLN_JOUR_MOIS_PJM VALUES (31)

/* insertion des données table TR_PLN_JOUR_FERIE_MOBILE_PFM */
INSERT INTO TR_PLN_JOUR_FERIE_MOBILE_PFM (PFM_ID, PFM_LIBELLE) VALUES (1, 'Pâques')
INSERT INTO TR_PLN_JOUR_FERIE_MOBILE_PFM (PFM_ID, PFM_LIBELLE) VALUES
(2, 'Ascension')
INSERT INTO TR_PLN_JOUR_FERIE_MOBILE_PFM (PFM_ID, PFM_LIBELLE) VALUES
(3, 'Pentecôte')

/* insertion des données table TR_PLN_JOUR_FERIE_FIXE_PJF */
INSERT INTO TR_PLN_JOUR_FERIE_FIXE_PJF VALUES (1, 1, 'jour de l''an')
INSERT INTO TR_PLN_JOUR_FERIE_FIXE_PJF VALUES (5, 1, 'fête du travail')
INSERT INTO TR_PLN_JOUR_FERIE_FIXE_PJF VALUES (5, 8, 'armistice 1945')
INSERT INTO TR_PLN_JOUR_FERIE_FIXE_PJF VALUES (7, 14, 'fête nationale')
INSERT INTO TR_PLN_JOUR_FERIE_FIXE_PJF VALUES (8, 15, 'Assomption')
INSERT INTO TR_PLN_JOUR_FERIE_FIXE_PJF VALUES (11, 1, 'Toussaint (fête des morts)')
INSERT INTO TR_PLN_JOUR_FERIE_FIXE_PJF VALUES (11, 11, 'armistice de 1918')
INSERT INTO TR_PLN_JOUR_FERIE_FIXE_PJF VALUES (12, 25, 'Noël')

/* insertion des données table TR_PLN_TRIMESTRE_PTR */
INSERT INTO TR_PLN_TRIMESTRE_PTR VALUES (1,'Premier trimestre')
INSERT INTO TR_PLN_TRIMESTRE_PTR VALUES (2,'Second trimestre')
INSERT INTO TR_PLN_TRIMESTRE_PTR VALUES (3,'Troisième trimestre')
INSERT INTO TR_PLN_TRIMESTRE_PTR VALUES (4,'Quatrième trimestre')

/* insertion des données table TR_PLN_SEMESTRE_PST */
INSERT INTO TR_PLN_SEMESTRE_PST VALUES (1,'Premier semestre')
INSERT INTO TR_PLN_SEMESTRE_PST VALUES (2,'Second semestre')

/**
 SCRIPTS TRANSACT SQL DES PROCÉDURES STOCKÉES POUR ALIMENTATION DES DONNÉES
**/

CREATE PROCEDURE SP_PLN_CREATE_ONE_YEAR @AN INTEGER
AS

/***
 TITRE : PROCEDURE STOCKÉE MS SQL Server "SP_PLN_CREATE_ONE_YEAR"
 AUTEUR : Frédéric BROUARD - 2002-09-06
 ARGUMENT : @AN INTEGER entier représentant l'année du calendrier dont les
 dates sont à stocker
 APPELÉE : par la procédure stockée SP_PLN_CREATE_YEAR qui vérifie les
 années à créer
**/

-- NOTA les dates sont calculées pour une seule année en débordant
-- éventuellement de quelques jours pour stocker des semaines entières

DECLARE @JOUR DATETIME
DECLARE @JOUR_DE_LAN DATETIME
DECLARE @JOUR_DEBUT DATETIME
DECLARE @JOUR_FIN DATETIME
DECLARE @i integer
DECLARE @JOUR_FIN_SEMAINE DATETIME
DECLARE @leapYear bit
DECLARE @ALEA INTEGER

SET NOCOUNT ON

-- indique de commencer la numérotation des jours de semaine à lundi
SET DATEFIRST 1

-- foamt ISO des dates
SET DATEFORMAT YMD

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
BEGIN TRANSACTION TRAN_INS_DATES

-- création des dates
SET @JOUR_DE_LAN = CAST(CAST(@AN AS VARCHAR(4)) + '-01-01' AS DATETIME)
SET @JOUR_DEBUT = DATEADD(DAY, -6, @JOUR_DE_LAN) -- soit le 26 décembre an - 1
SET @JOUR_FIN = CAST(CAST(@AN + 1 AS VARCHAR(4)) + '-01-01' AS DATETIME)
SET @JOUR_FIN = DATEADD(DAY, 5, @JOUR_FIN) -- soit le 6 janvier an + 1
SET @JOUR = @JOUR_DEBUT

-- vérification de présence des années pour débordement des dates
-- l'année avant @AN existe t-elle ?
SET @i = DATEPART(YEAR, @JOUR_DEBUT)
IF NOT EXISTS(SELECT *
 FROM TR_PLN_ANNEE_PAN
 WHERE PAN_ID = @i)
BEGIN
 IF @i % 4 = 0
 SET @leapYear = 1
 ELSE
 SET @leapYear = 0
 INSERT INTO TR_PLN_ANNEE_PAN
 VALUES (@i, @leapYear)
 IF @@ERROR <> 0 BEGIN GOTO LBL_ERROR RETURN END
END
-- l'année après @AN existe t-elle ?
SET @i = DATEPART(YEAR, @JOUR_FIN)
IF NOT EXISTS(SELECT *
 FROM TR_PLN_ANNEE_PAN
 WHERE PAN_ID = @i)
BEGIN
 IF @i % 4 = 0
 SET @leapYear = 1
 ELSE
 SET @leapYear = 0
 INSERT INTO TR_PLN_ANNEE_PAN
 VALUES (@i, @leapYear)
 IF @@ERROR <> 0 BEGIN GOTO LBL_ERROR RETURN END
END

-- création de l'année @AN
IF NOT EXISTS(SELECT *
 FROM TR_PLN_ANNEE_PAN
 WHERE PAN_ID = @AN)
BEGIN
 IF @AN % 4 = 0
 SET @leapYear = 1
 ELSE
 SET @leapYear = 0
 INSERT INTO TR_PLN_ANNEE_PAN
 VALUES (@AN, @leapYear)

Page 20 of 26Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ...

14/04/2008http://sqlpro.developpez.com/cours/gestiontemps/

 IF @@ERROR <> 0 BEGIN GOTO LBL_ERROR RETURN END
END

WHILE @JOUR < @JOUR_FIN
BEGIN
 SET @ALEA = RAND() * 100000
 IF NOT EXISTS (SELECT *
 FROM T_PLN_JOUR_PJR
 WHERE PJR_DATE = @JOUR)
 BEGIN
 INSERT INTO T_PLN_JOUR_PJR (PJR_DATE, PAN_ID, PMS_ID, PJM_ID, PJS_ID, PJA_ID,
PJR_RANG_JOUR, PJR_ALEA)
 VALUES (@JOUR,
 DATEPART(YEAR, @JOUR),
 DATEPART(MONTH, @JOUR),
 DATEPART(DAY, @JOUR),
 DATEPART(WEEKDAY, @JOUR),
 DATEPART(DAYOFYEAR, @JOUR),
 CAST(@JOUR AS INTEGER),
 @ALEA)
 IF @@ERROR <> 0 BEGIN GOTO LBL_ERROR RETURN END
 END
 SET @JOUR = DATEADD(DAY, 1, @JOUR)
END

/* Update des trimestres et semestres */

UPDATE T_PLN_JOUR_PJR
SET PTR_ID = 1, PST_ID = 1
WHERE DATEPART(MONTH, PJR_DATE) BETWEEN 1 AND 3
 AND PAN_ID = @AN AND PTR_ID IS NULL
IF @@ERROR <> 0 BEGIN GOTO LBL_ERROR RETURN END

UPDATE T_PLN_JOUR_PJR
SET PTR_ID = 2, PST_ID = 1
WHERE DATEPART(MONTH, PJR_DATE) BETWEEN 4 AND 6
 AND PAN_ID = @AN AND PTR_ID IS NULL
IF @@ERROR <> 0 BEGIN GOTO LBL_ERROR RETURN END

UPDATE T_PLN_JOUR_PJR
SET PTR_ID = 3, PST_ID = 2
WHERE DATEPART(MONTH, PJR_DATE) BETWEEN 7 AND 9
 AND PAN_ID = @AN AND PTR_ID IS NULL
IF @@ERROR <> 0 BEGIN GOTO LBL_ERROR RETURN END

UPDATE T_PLN_JOUR_PJR
SET PTR_ID = 4, PST_ID = 2
WHERE DATEPART(MONTH, PJR_DATE) BETWEEN 10 AND 12
 AND PAN_ID = @AN AND PTR_ID IS NULL
IF @@ERROR <> 0 BEGIN GOTO LBL_ERROR RETURN END

-- création des semaines de l'année
-- calage premier jour de semaine
SET @JOUR = @JOUR_DE_LAN
IF DATEPART(WEEKDAY, @JOUR) > 4
BEGIN
 WHILE DATEPART(WEEKDAY, @JOUR) <> 1
 SET @JOUR = DATEADD(DAY, +1, @JOUR)
END
ELSE
BEGIN
 WHILE DATEPART(WEEKDAY, @JOUR) <> 1
 SET @JOUR = DATEADD(DAY, -1, @JOUR)
END
SET @i = 1
WHILE DATEADD(DAY, 7, @JOUR) < @JOUR_FIN
BEGIN
 UPDATE T_PLN_JOUR_PJR
 SET PSM_ID = @i
 WHERE PJR_DATE BETWEEN @JOUR AND DATEADD(DAY, 6, @JOUR)
 IF @@ERROR <> 0 BEGIN GOTO LBL_ERROR RETURN END
 SET @JOUR = DATEADD(DAY, 7, @JOUR)
 SET @i = @i + 1
END

SET NOCOUNT OFF
COMMIT TRANSACTION TRAN_INS_DATES

RETURN

LBL_ERROR:
ROLLBACK TRANSACTION TRAN_INS_DATES

GO

/**
 TITRE : PROCEDURE STOCKÉE MS SQL Server "SP_PLN_CREATE_YEAR"
 AUTEUR : Frédéric BROUARD - 2002-09-06
 ARGUMENT : @AN INTEGER entier dans les limtes 1900 / 200 représentant
 l'année du calendrier dont les dates sont à stocker
 APPELS : la procédure stockée SP_PLN_CREATE_ONE_YEAR qui créé une année
 de date
**/

CREATE PROCEDURE SP_PLN_CREATE_YEAR @AN INTEGER
AS

-- alimente les tables :
-- TR_PLN_JOUR_ANNEE_PJA
-- TR_PLN_ANNEE_PAN
-- TR_PLN_JOUR_PJR
-- TR_PLN_SEMAINE_PSM

-- vérifaction des limites d'utilisation
-- limite de calcul : année comprise entre 1601 et 2399

IF @AN < 1901 OR @AN > 2099
 BEGIN
 DECLARE @TXT_ERROR VARCHAR(300)
 SET @TXT_ERROR = 'Il n''est pas possible de calculer le calendrier pour des
années hors de la plage 1900 / 2100.'
 +' En l''occurence vous avez tené de calculer les dates de l''année
%d.'

Page 21 of 26Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ...

14/04/2008http://sqlpro.developpez.com/cours/gestiontemps/

 RAISERROR (@TXT_ERROR, 16, 1, @AN)
 RETURN
 END

--DECLARE @JOUR_DE_LAN DATETIME
DECLARE @MIN_AN INTEGER
DECLARE @MAX_AN INTEGER
DECLARE @i integer

--DECLARE @JOUR_FIN_SEMAINE DATETIME

--DECLARE @leapYear bit

SET NOCOUNT ON
SET DATEFORMAT YMD

--SET @JOUR_DE_LAN = CAST(CAST(@AN AS VARCHAR(4)) + '-01-01' AS DATETIME)

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
BEGIN TRANSACTION

-- création des jours de l'année de 1 à 366 si cela n'est pas déjà fait.
IF NOT EXISTS(SELECT 1
 FROM TR_PLN_JOUR_ANNEE_PJA
 HAVING COUNT(*) = 366)
BEGIN
 SET @i = 1
 WHILE @i <= 366
 BEGIN
 INSERT INTO TR_PLN_JOUR_ANNEE_PJA
 VALUES (@i)
 IF @@ERROR <> 0 BEGIN ROLLBACK RETURN END
 SET @i = @i + 1
 END
END

-- création des numéro de semaine de 1 à 53 si cela n'est pas déjà fait.
IF NOT EXISTS(SELECT 1
 FROM TR_PLN_SEMAINE_PSM
 HAVING COUNT(*) = 53)
BEGIN
 SET @i = 1
 WHILE @i <= 53
 BEGIN
 INSERT INTO TR_PLN_SEMAINE_PSM
 VALUES (@i)
 IF @@ERROR <> 0 BEGIN ROLLBACK RETURN END
 SET @i = @i + 1
 END
END

COMMIT TRANSACTION

-- l'année à créer a t-elle déjà été créée ?
IF EXISTS (SELECT 1
 FROM T_PLN_JOUR_PJR
 GROUP BY PJR_DATE
 HAVING COUNT(*) >= 365)
-- oui, alors retour
RETURN

-- non, alors on regarde si d'autres années ont été créées
SELECT @MIN_AN = MIN(PAN_ID), @MAX_AN = MAX(PAN_ID)
FROM T_PLN_JOUR_PJR
GROUP BY PAN_ID
HAVING COUNT(*) >= 365

-- le calendrier est vide : une seule année est à créer
IF @MIN_AN IS NULL AND @MAX_AN IS NULL
BEGIN
 EXEC SP_PLN_CREATE_ONE_YEAR @AN
 RETURN
END

-- le calendrier est déjà rempli et l'année à créer si situe
-- avant les années déjà créées
IF @AN < @MIN_AN
BEGIN
 WHILE @AN < @MIN_AN
 BEGIN
 EXEC SP_PLN_CREATE_ONE_YEAR @AN
 SET @AN = @AN + 1
 END
 RETURN
END

-- le calendrier est déjà rempli et l'année à créer si situe
-- après les années déjà créées
IF @AN > @MAX_AN
BEGIN
 WHILE @AN > @MIN_AN
 BEGIN
 EXEC SP_PLN_CREATE_ONE_YEAR @AN
 SET @AN = @AN - 1
 END
 RETURN
END

GO

Exemple d'appel du script :
SP_PLN_CREATE_YEAR 2000 => création des dates de l'année 2000 du 26/12/1999 au
6/1/2001
SP_PLN_CREATE_YEAR 2010 => création des dates de toutes les années entre 2001 et
2010

REQUÊTE DE MISE A JOUR DES RANGS

-- maj du rang des années
UPDATE T_PLN_JOUR_PJR
SET PJR_RANG_AN =
 CAST(
 (CAST(PAN_ID AS FLOAT) - 1899.0)
 + (CAST(PJR_RANG_JOUR AS FLOAT)

Page 22 of 26Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ...

14/04/2008http://sqlpro.developpez.com/cours/gestiontemps/

 - (SELECT CAST(PJR2.PJR_RANG_JOUR AS FLOAT)
 FROM T_PLN_JOUR_PJR PJR2
 WHERE PJR2.PJM_ID = 1
 AND PJR2.PMS_ID = 1
 AND PJR2.PAN_ID = PJR.PAN_ID +1))
 / (SELECT CAST(COUNT(*) AS FLOAT)
 FROM T_PLN_JOUR_PJR PJR3
 WHERE PJR3.PAN_ID = PJR.PAN_ID)
 AS DECIMAL(10,4))
FROM T_PLN_JOUR_PJR PJR

-- maj du rang des mois
UPDATE T_PLN_JOUR_PJR
SET PJR_RANG_MOIS =
 CAST(
 (CAST(PAN_ID AS FLOAT) - 1900.0) * 12 + PMS_ID + 1
 + (CAST(PJR_RANG_JOUR AS FLOAT)
 - (SELECT CAST(PJR2.PJR_RANG_JOUR AS FLOAT)
 FROM T_PLN_JOUR_PJR PJR2
 WHERE PJR2.PJM_ID = 1
 AND PJR2.PMS_ID = (PJR.PMS_ID % 12) + 1
 AND PJR2.PAN_ID =
 CASE
 WHEN PJR.PMS_ID + 1 = 13
 THEN PJR.PAN_ID +1
 ELSE PJR.PAN_ID
 END))
 / (SELECT CAST(COUNT(*) AS FLOAT)
 FROM T_PLN_JOUR_PJR PJR3
 WHERE PJR3.PMS_ID = PJR.PMS_ID
 AND PJR3.PAN_ID = PJR.PAN_ID)
 AS DECIMAL(10,4))
FROM T_PLN_JOUR_PJR PJR

-- maj du rang des semaines
UPDATE T_PLN_JOUR_PJR
SET PJR_RANG_SEMAINE =
 CAST(
 CAST(PSM_ID AS FLOAT) + 51
 + (SELECT SUM(MAX_PSM_ID)
 FROM (SELECT MAX(PSM_ID) AS MAX_PSM_ID
 FROM T_PLN_JOUR_PJR
 WHERE PAN_ID < PJR.PAN_ID
 GROUP BY PAN_ID)
 T)
 + (CAST(PJS_ID AS FLOAT) - 1) / 7)
 AS DECIMAL(10,4))
FROM T_PLN_JOUR_PJR PJR

-- maj du rang des trimestres
UPDATE T_PLN_JOUR_PJR
SET PJR_RANG_TRIMESTRE =
CAST((CAST(PAN_ID AS FLOAT) - 1900) * 4 + PTR_ID
-- + nombre de jours écoulé
 + (CAST((SELECT COUNT(*)
 FROM T_PLN_JOUR_PJR PJR2
 WHERE PJR2.PTR_ID = PJR.PTR_ID
 AND PJR2.PAN_ID = PJR.PAN_ID
 AND PJR2.PJR_DATE <= PJR.PJR_DATE) AS FLOAT) - 1)
-- divisé par le total de jours
 / (CAST((SELECT COUNT(*)
 FROM T_PLN_JOUR_PJR PJR3
 WHERE PJR3.PTR_ID = PJR.PTR_ID
 AND PJR3.PAN_ID = PJR.PAN_ID) AS FLOAT))
 AS DECIMAL(10,4))
FROM T_PLN_JOUR_PJR PJR

-- maj du rang des semestres
UPDATE T_PLN_JOUR_PJR
SET PJR_RANG_SEMESTRE =
 CAST((CAST(PAN_ID AS FLOAT) - 1900) * 2 + PST_ID
-- + nombre de jours écoulé
 + (CAST((SELECT COUNT(*)
 FROM T_PLN_JOUR_PJR PJR2
 WHERE PJR2.PST_ID = PJR.PST_ID
 AND PJR2.PAN_ID = PJR.PAN_ID
 AND PJR2.PJR_DATE <= PJR.PJR_DATE) AS FLOAT) - 1)

-- divisé par le total de jours
 / (CAST((SELECT COUNT(*)
 FROM T_PLN_JOUR_PJR PJR3
 WHERE PJR3.PST_ID = PJR.PST_ID
 AND PJR3.PAN_ID = PJR.PAN_ID) AS FLOAT))
 AS DECIMAL(10,4))
FROM T_PLN_JOUR_PJR PJR

A titre indicatif voici les nombre de semaines dans les années allant de 1900 à 2030
ainsi que le cumul du nombre de semaines depuis le 1er janvier 1900

ANNEE JOUR_DE_LAN JOUR_SEMAINE NOMBRE_SEMAINE CUMUL_SEMAINE
------ ----------- ------------ -------------- -------------
1900 1900-01-01 lundi 52 52
1901 1901-01-01 mardi 52 104
1902 1902-01-01 mercredi 52 156
1903 1903-01-01 jeudi 53 209
1904 1904-01-01 vendredi 53 262
1905 1905-01-01 dimanche 52 314
1906 1906-01-01 lundi 52 366
1907 1907-01-01 mardi 52 418
1908 1908-01-01 mercredi 53 471
1909 1909-01-01 vendredi 53 524
1910 1910-01-01 samedi 52 576
1911 1911-01-01 dimanche 52 628
1912 1912-01-01 lundi 52 680
1913 1913-01-01 mercredi 52 732
1914 1914-01-01 jeudi 53 785
1915 1915-01-01 vendredi 53 838
1916 1916-01-01 samedi 52 890
1917 1917-01-01 lundi 52 942
1918 1918-01-01 mardi 52 994
1919 1919-01-01 mercredi 52 1046
1920 1920-01-01 jeudi 53 1099
1921 1921-01-01 samedi 53 1152
1922 1922-01-01 dimanche 52 1204
1923 1923-01-01 lundi 52 1256
1924 1924-01-01 mardi 52 1308

Page 23 of 26Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ...

14/04/2008http://sqlpro.developpez.com/cours/gestiontemps/

En prime, voici comment calculer les dates fériées mobiles des fêtes chrétiennes, le
programme est une procédure écrite pour Transact SQL :

1925 1925-01-01 jeudi 53 1361
1926 1926-01-01 vendredi 53 1414
1927 1927-01-01 samedi 52 1466
1928 1928-01-01 dimanche 52 1518
1929 1929-01-01 mardi 52 1570
1930 1930-01-01 mercredi 52 1622
1931 1931-01-01 jeudi 53 1675
1932 1932-01-01 vendredi 53 1728
1933 1933-01-01 dimanche 52 1780
1934 1934-01-01 lundi 52 1832
1935 1935-01-01 mardi 52 1884
1936 1936-01-01 mercredi 53 1937
1937 1937-01-01 vendredi 53 1990
1938 1938-01-01 samedi 52 2042
1939 1939-01-01 dimanche 52 2094
1940 1940-01-01 lundi 52 2146
1941 1941-01-01 mercredi 52 2198
1942 1942-01-01 jeudi 53 2251
1943 1943-01-01 vendredi 53 2304
1944 1944-01-01 samedi 52 2356
1945 1945-01-01 lundi 52 2408
1946 1946-01-01 mardi 52 2460
1947 1947-01-01 mercredi 52 2512
1948 1948-01-01 jeudi 53 2565
1949 1949-01-01 samedi 53 2618
1950 1950-01-01 dimanche 52 2670
1951 1951-01-01 lundi 52 2722
1952 1952-01-01 mardi 52 2774
1953 1953-01-01 jeudi 53 2827
1954 1954-01-01 vendredi 53 2880
1955 1955-01-01 samedi 52 2932
1956 1956-01-01 dimanche 52 2984
1957 1957-01-01 mardi 52 3036
1958 1958-01-01 mercredi 52 3088
1959 1959-01-01 jeudi 53 3141
1960 1960-01-01 vendredi 53 3194
1961 1961-01-01 dimanche 52 3246
1962 1962-01-01 lundi 52 3298
1963 1963-01-01 mardi 52 3350
1964 1964-01-01 mercredi 53 3403
1965 1965-01-01 vendredi 53 3456
1966 1966-01-01 samedi 52 3508
1967 1967-01-01 dimanche 52 3560
1968 1968-01-01 lundi 52 3612
1969 1969-01-01 mercredi 52 3664
1970 1970-01-01 jeudi 53 3717
1971 1971-01-01 vendredi 53 3770
1972 1972-01-01 samedi 52 3822
1973 1973-01-01 lundi 52 3874
1974 1974-01-01 mardi 52 3926
1975 1975-01-01 mercredi 52 3978
1976 1976-01-01 jeudi 53 4031
1977 1977-01-01 samedi 53 4084
1978 1978-01-01 dimanche 52 4136
1979 1979-01-01 lundi 52 4188
1980 1980-01-01 mardi 52 4240
1981 1981-01-01 jeudi 53 4293
1982 1982-01-01 vendredi 53 4346
1983 1983-01-01 samedi 52 4398
1984 1984-01-01 dimanche 52 4450
1985 1985-01-01 mardi 52 4502
1986 1986-01-01 mercredi 52 4554
1987 1987-01-01 jeudi 53 4607
1988 1988-01-01 vendredi 53 4660
1989 1989-01-01 dimanche 52 4712
1990 1990-01-01 lundi 52 4764
1991 1991-01-01 mardi 52 4816
1992 1992-01-01 mercredi 53 4869
1993 1993-01-01 vendredi 53 4922
1994 1994-01-01 samedi 52 4974
1995 1995-01-01 dimanche 52 5026
1996 1996-01-01 lundi 52 5078
1997 1997-01-01 mercredi 52 5130
1998 1998-01-01 jeudi 53 5183
1999 1999-01-01 vendredi 53 5236
2000 2000-01-01 samedi 52 5288
2001 2001-01-01 lundi 52 5340
2002 2002-01-01 mardi 52 5392
2003 2003-01-01 mercredi 52 5444
2004 2004-01-01 jeudi 53 5497
2005 2005-01-01 samedi 53 5550
2006 2006-01-01 dimanche 52 5602
2007 2007-01-01 lundi 52 5654
2008 2008-01-01 mardi 52 5706
2009 2009-01-01 jeudi 53 5759
2010 2010-01-01 vendredi 53 5812
2011 2011-01-01 samedi 52 5864
2012 2012-01-01 dimanche 52 5916
2013 2013-01-01 mardi 52 5968
2014 2014-01-01 mercredi 52 6020
2015 2015-01-01 jeudi 53 6073
2016 2016-01-01 vendredi 53 6126
2017 2017-01-01 dimanche 52 6178
2018 2018-01-01 lundi 52 6230
2019 2019-01-01 mardi 52 6282
2020 2020-01-01 mercredi 53 6335
2021 2021-01-01 vendredi 53 6388
2022 2022-01-01 samedi 52 6440
2023 2023-01-01 dimanche 52 6492
2024 2024-01-01 lundi 52 6544
2025 2025-01-01 mercredi 52 6596
2026 2026-01-01 jeudi 53 6649
2027 2027-01-01 vendredi 53 6702
2028 2028-01-01 samedi 52 6754
2029 2029-01-01 lundi 52 6806
2030 2030-01-01 mardi 52 6858

**
calcul des dates fériées chrétiennes dans le calendrier grégorien
**
Algorithme conçu par Claus Tøndering .

Page 24 of 26Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ...

14/04/2008http://sqlpro.developpez.com/cours/gestiontemps/

7. Pour en savoir plus sur le sujet

LIVRES :

Developping Time-Oriented Database Applications in SQL - Ricahrds T. Snodgrass -
Morgan Kauffmann - 2000
Temporal Data and the Relational Model - C. J. Date, Hugh Darwen, Nikos A. Lorentzos -
Morgan Kauffmann - 2000

WEB :

http://membres.lycos.fr/urbainmartin/temps.et.calendriers/
http://pchapelin.free.fr/calrep/index.htm
http://perso.easynet.fr/~cerf/calendar/calendar.htm http://www.bdl.fr/minitel/
http://www.geocities.com/Paris/Louvre/9647/histoire.htm
http://lwh.free.fr/pages/algo/calendriers/calendriers.htm
http://www.altcal.com/propcal.html http://www.cite-
sciences.fr/francais/ala_cite/act_educ/education/createurs/temps/tintrod.htm
http://perso.wanadoo.fr/b.villemin/bissexti.html

Version 2.0 - 11 Nov 1998

Copyright and disclaimer

 This document is Copyright (C) 1998 by Claus Tondering.
 E-mail: claus@tondering.dk.
 The document may be freely distributed, provided this
 copyright notice is included and no money is charged for
 the document.
 This document is provided "as is". No warranties are made as
 to its correctness.

This algorithm is based in part on the algorithm of Oudin (1940) as
quoted in "Explanatory Supplement to the Astronomical Almanac",
P. Kenneth Seidelmann, editor.

People who want to dig into the workings of this algorithm, may be
interested to know that
 G is the Golden Number-1
 H is 23-Epact (modulo 30)
 I is the number of days from 21 March to the Paschal full moon
 J is the weekday for the Paschal full moon (0=Sunday, 1=Monday,
 etc.)
 L is the number of days from 21 March to the Sunday on or before
 the Paschal full moon (a number between -6 and 28
**
Le lundi de Pâques est déterminé par :
 Dimanche de Pâques + 1 jour
Le Jeudi de l'ascension est déterminé par :
 Dimanche de Pâques + 39 jours
Le Lundi de pentecôte est déterminé par :
 Dimanche de Pâques + 50 jours

CREATE PROCEDURE SP_PLN_ADD_JOUR_FERIE_MOBILE_CHRETIEN @AN INT
AS

SET DATEFORMAT YMD

DECLARE @G INT
DECLARE @I INT
DECLARE @J INT
DECLARE @C INT
DECLARE @H INT
DECLARE @L INT
DECLARE @JourPaque INT
DECLARE @MoisPaque INT
DECLARE @DimPaque DATETIME
DECLARE @LunPaque DATETIME
DECLARE @JeuAscension DATETIME
DECLARE @LunPentecote DATETIME

SET @G = @AN % 19
SET @C = @AN / 100
SET @H = (@C - @C / 4 - (8 * @C + 13) / 25 + 19 * @G + 15) % 30
SET @I = @H - (@H / 28) * (1 - (@H / 28) * (29 / (@H + 1)) * ((21 - @G) / 11))
SET @J = (@AN + @AN / 4 + @I + 2 - @C + @C / 4) % 7

SET @L = @I - @J
SET @MoisPaque = 3 + (@L + 40) / 44
SET @JourPaque = @L + 28 - 31 * (@MoisPaque / 4)

SET DATEFORMAT YMD

SET @DimPaque = CAST(CAST(@AN AS VARCHAR(4)) + '-'
 + CAST(@MoisPaque AS VARCHAR(2)) + '-'
 + CAST(@JourPaque AS VARCHAR(2)) AS DATETIME)
SET @LunPaque = DATEADD(DAY, 1, @DimPaque)
SET @JeuAscension = DATEADD(DAY, 39, @DimPaque)
SET @LunPentecote = DATEADD(DAY, 50, @DimPaque)

SELECT 'Dimanche' AS JOUR, 'Pâques' AS FETE, @DimPaque AS DATE_FETE
UNION
SELECT 'Lundi' AS JOUR, 'Pâques' AS FETE, @LunPaque AS DATE_FETE
UNION
SELECT 'Jeudi' AS JOUR, 'Ascension' AS FETE, @JeuAscension AS DATE_FETE
UNION
SELECT 'Lundi' AS JOUR, 'Pentecôte AS FETE, @LunPentecote AS DATE_FETE

GO

Livres

SQL - développement

SQL - le cours de référence sur le langage SQL

Avant d'aborder le SQL

Page 25 of 26Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ...

14/04/2008http://sqlpro.developpez.com/cours/gestiontemps/

Copyright © 2004 Frédéric Brouard. Aucune reproduction, même partielle, ne peut être faite de ce site et de
l'ensemble de son contenu : textes, documents, images, etc sans l'autorisation expresse de l'auteur. Sinon vous
encourez selon la loi jusqu'à 3 ans de prison et jusqu'à 300 000 E de dommages et intérêts. Cette page est
déposée à la SACD.

Définitions

SGBDR fichier ou client/serveur ?

La base de données exemple (gestion d'un hôtel)

Modélisation MERISE

Mots réservés du SQL

Le SQL de A à Z

Les fondements

Le simple (?) SELECT

Les jointures, ou comment interroger plusieurs tables

Groupages, ensembles et sous-ensembles

Les sous-requêtes

Insérer, modifier, supprimer

Création des bases

Gérer les privilèges ("droits")

Toutes les fonctions de SQL

Les techniques des SGBDR

Les erreur les plus fréquentes en SQL

Les petits papiers de SQLPro

Conférence Borland 2003

L'héritage des données

Données et normes

Modélisation par méta données

Optimisez votre SGBDR et vos requêtes SQL

Le temps, sa mesure, ses calculs

QBE, le langage de ZLOOF

Des images dans ma base

La jointure manquante

Clefs auto incrémentées

L'indexation textuelle

L'art des "Soundex"

Une seule colonne, plusieurs données

La division relationnelle, mythe ou réalité ?

Gestion d'arborescence en SQL

L'avenir de SQL

Méthodes et standards

Les doublons

SQL Server

Eviter les curseurs

Un aperçu de TRANSACT SQL V 2000

SQL Server 2000 et les collations

Sécurisation des accès aux bases de données SQL Server

Des UDF pour SQL Server

SQL Server et le fichier de log...

Paradox

De vieux articles publiés entre 1995 et 1999 dans la défunte revue Point DBF

(1)

A cette date arbitraire, on trouve :
- discours de Pompidou à Aurillac
- naissance de Gérald Gardrinier dit De Palmas,
chanteur
- naissance d'Alain Roche footballeur
- publication au JO du décret n° 67-896 du 6
octobre 1967
- fondation du judo club de Nangis
- décès de Marcel Aymé
- création de la Ligue du Limousin de Voile
- grand prix moto du Japon vainqueur Mike
HAILWOOD sur 350 cc (HONDA)

Page 26 of 26Les petits papiers de SQLPro - Traitements temporels en SQL - Club d'entraide des ...

14/04/2008http://sqlpro.developpez.com/cours/gestiontemps/

